
 

 

 

 

 

Abstract—Stereo matching techniques are used to extract 3D 

information from 2D stereo pair of images. It can be classified 

into feature based approach, window (area) based approach, 

and optimization based approach. Feature based approach 

generally generates sparse disparity map with high accuracy 

and low execution time. Window based approach produces 

dense disparity map with low accuracy and low execution time. 

Optimization based approach generates dense disparity map 

with high accuracy and high execution time. Since the ultimate 

goal of stereo matching is to obtain dense disparity map with 

high accuracy and low execution time, we choose to select 

optimization based approach and implement it in parallel 

framework to overcome execution speed deficiency. There are 

several optimization methods including dynamic programming, 

energy minimization, and graph algorithms. We choose to use 

dynamic programming based on disparity space image (DSI) 

since it is most appropriate for parallel framework. In this paper, 

we propose a new parallel algorithm and framework for DSI 

construction, dynamic programming (DP), and disparity 

computation using Compute Unified Device Architecture 

(CUDA). We tested the method on several stereo pairs and found 

that the method shows remarkable speedup while preserving the 

quality at a reasonable level. 

 

Index Terms—Stereo matching, DSI, CUDA.  

 

I. INTRODUCTION 

Researchers have given special attention to stereo vision as 

it is capable of acquiring disparity and hence the depth 

information of an observed scene. Many stereo vision 

techniques are using two adjacent forward-facing cameras, 

where each camera produces a 2D projection of the scene. 

Stereo vision techniques help in extracting 3D information 

using stereo pair taken by cameras. 3D information is very 

useful as it surmounts the problems and limits related to 2D.  

Stereo matching is a crucial step in stereo vision. For stereo 

matching, one image is taken as a reference image and the 

other as an input image. The pixels from reference image are 

matched with those of input image. Assuming the rectification 

is done, the horizontal distance between two matched pixels is 

termed as disparity. This disparity information is then 

translated into depth up to the scale factor. Fig. 1 shows one 

example stereo pair and ground truth of disparity map taken 

from Middlebury stereo vision page mentioned in Scharstein 

et al. [1]. 

Stereo matching algorithms can be classified into feature 

based approach, window (area) based approach, and 

optimization based approach. In feature based methods, 

 
Manuscript received November 24, 2013; revised January 24, 2014. 

The authors are with the Myongji University, Yongin, 449-728, Korea 

(e-mail:  aamergcu@hotmail.com, soh@mju.ac.kr, kit@mju.ac.kr). 

various features were used. They are regions [2], [3], lines [4], 

[5], and points [6], [7]. For feature based matching, methods 

using spatial relations or invariant descriptors, relaxation 

method, and wavelets were proposed. In area based methods, 

no features are selected and regularly tessellated areas are 

usually used for matching. Area based matching methods can 

be categorized into three groups. They are cross correlation 

(CC)-like methods, Fourier transform-based methods, and 

mutual information methods. CC-like methods include 

normalized cross correlation (NCC), sum of squared 

difference (SSD), sum of absolute difference (SAD), and 

structural similarity (SSIM). Fourier transform-based 

methods include phase correlation and extended phase 

correlation [8]. Mutual information methods make use of joint 

and conditional entropy concepts. In optimization based 

methods, matching cost is computed and aggregated, and 

usually global optimization methods such as DP [9], energy 

minimization [10], and graph algorithms [11] are applied. 

   
               (a)                                      (b)                                      (c) 

Fig. 1. Stereo pair with ground truth (a). reference image, (b) input image, 

and (c) ground truth. 

 

Feature based approach generally produces sparse 

disparity map with high accuracy and low execution time. 

Window based approach generates dense disparity map with 

low accuracy and low execution time. Optimization based 

approach produces dense disparity map with high accuracy 

and high execution time. Since the ultimate goal of stereo 

matching is to obtain dense disparity map with high accuracy 

and low execution time, we choose to select optimization 

based approach and implement it in parallel framework to 

overcome execution speed deficiency. Among many 

optimization based methods, we select to exploit DP based on 

DSI since it seems most appropriate for implementing in 

parallel framework. In this paper, we propose a new parallel 

algorithm for DSI construction, DP, disparity computation, 

and disparity refinement using Compute Unified Device 

Architecture (CUDA) provided by NVIDIA. Unlike 

conventional parallel algorithms having only a single level of 

parallelism, we use two levels of parallelism. 

This paper is organized as follows. Section II presents 

related work and Section III explains the proposed method. 

The experimental results are described in Section IV and 

Section V concludes the paper. 
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II. RELATED WORK 

In this section, several conventional DSI based stereo 

matching methods are reviewed.  

Bobick et al. [12] proposed DSI based method in the 

presence of large occlusion. They used ground control points 

(GCPs) to reduce the sensitivity to occlusion cost and 

algorithmic complexity. GCPs are feature points that help in 

strong matching. GCPs are used to avoid smooth transient 

across depth discontinuities and allow disparity jumps that are 

needed at depth boundaries. They also made use of intensity 

edges since, in many cases, intensity edges and depth edges 

coincide. Their method produced reasonably good disparity 

results, but execution time is far from real time processing. 

Furthermore their method considers only ortho-frontal 

surfaces.  

Tsai et al. [13] proposed a divide-and-conquer DSI 

approach that is a mixture of feature based method and 

optimization based method. Since feature based method alone 

is not able to generate dense disparity map, DSI based method 

is added. They first look for strong features and divide each 

row of the image into pieces and then conquer them using DSI 

based method. Thus strong features act the role of robust 

disparity guideline and DSI based method produces dense 

disparity map between features. Since strong features are used 

first, this method works well for low textured area also. 

However, due to feature finding and recursive nature of the 

method, execution requires too much time. For instance, it 

takes more than 20 minutes to process a stereo pair of 512 × 

512 images. 

Otha et al. [14] used DP for inter scan line search and intra 

scan line search for acquiring 3D information from stereo pair. 

Inter scan line matching was used for matching the connected 

edge, while intra scan line matching was for matching every 

edge given the connected edges. The algorithm successfully 

works for those images that contain the short connected edges, 

but for long connected edges, long processing time is required. 

Thus special type of hardware was used for segmenting the 

objects from images and this made the algorithm hardware 

dependent and costly. 

 Baha et al. [15] used DSI based DP method that was based 

on DSI construction and disparity map refinement. Window 

matching is performed for DSI construction. Shifting window 

of size 7×7 was used to avoid the recalculation of the sum of 

aggregate cost for each pixel in the window. This approach 

was efficient in terms of execution time but using window 

based approach may produce a lot of matching errors at 

disparity discontinuities. 

Kim et al. [9] proposed DSI based method where they used 

adaptive search region to reduce the computation time for cost 

matrix calculation. Usually cost matrix is computed globally. 

However, they did full search only at the centerline, found 

matching path, and restricted search region for all other scan 

lines within 5 lines up and down of the previous scan line, thus 

reducing the computation time of cost matrix for DP. They 

used different neighborhood configuration when computing 

cost of each element in DSI. They also adopted regularization 

process in building the DSI where they took the average of 

DSI values of 1× 3 window to get final DSI value. Despite the 

effort of reducing the computation time, this method still takes 

too much time and is not suitable for real time applications. 

For instance, it took almost 9 sec to process 512 × 512 stereo 

image pair.  

Some researchers start to use graphics processing unit 

(GPU) with many cores to speed up the execution time for real 

time applications.  

Gibson et al. [16] used GPU for the first time for the 

calculation of dense disparity map using semi global matching. 

Their proposed method is based on Birchfield et al.’s work 

[17]. Their method consists of cost computation, semi global 

matching for cost optimization, and disparity refinement. 

They are among the first who used GPU in stereo vision 

problem. Since GPU was adopted, there was a speedup in 

execution time. However, since the method was based on 

window matching, it did not produce satisfactory enough 

execution time that is crucial for real time applications. 

Congote et al. [18] successfully implemented the algorithm 

in CUDA using GPU. The cost per pixel was calculated by 

aggregating the cost using SAD and optimal cost path is 

calculated using DP for each scan line in their proposed 

method.  They used different GPUs for acquiring the running 

time of conventional parallel DP algorithm and showed that 

the GPU based algorithms exhibit lower execution time than 

CPU based algorithm and produce stable disparity maps. 

They tested five kinds of GPU boards with increasing number 

of cores and concluded that the more the cores are, the faster 

the performance is. 

 

III. THE PROPOSED METHOD 

As was mentioned in Section I, we choose to use DP based 

optimization method utilizing DSI’s since it seems most 

appropriate for implementing in parallel framework. Fig. 2 

shows the block diagram of the method we selected. DSI 

based DP method consists of four steps. They are DSI 

construction, DP, disparity computation, and disparity 

refinement. In the first step, DSI is constructed. In this paper, 

we assume that rectification is already done. Thus each 

corresponding row of reference image and an input image is 

used to construct DSI. For M × N image, N DSI’s of size M × 

M are constructed. Thus DSI space becomes M × M × N. In 

the second step, we perform DP consisting of two parts. In the 

first part, matching cost is aggregated to compute cost matrix. 

In the second part, backtracking is performed to designate the 

minimum cost path. The third step of the method computes 

disparities from each DSI and forms a whole disparity map. 

The final step refines disparities to remove possible disparity 

noise.  

 
Fig. 2. Block diagram of the proposed method. 
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Following subsections describe parallel implementation 

algorithm for each step in Fig. 2. 

A. DSI Construction 

Concept: DSI represents the matching error between the 

row of reference image and the corresponding row of input 

image and can be obtained as in (1), 

DSIn (xR, xI) = |IR (xR, n) - II (xI, n)|                 (1) 

where IR (xR, n) is the pixel value of xR position of the n
th

 scan 

line in the reference image and II (xI, n) is that of the input 

image. The process of making DSI for one scan line is shown 

in Fig. 3. Here a particular row indicated in white is used to 

construct DSI. We use the convention that one particular row 

from reference image is arranged horizontally from left to 

right and corresponding row from input image is arranged 

vertically from bottom to top to compute the absolute 

differences of corresponding element pairs. Thus lower left 

corner becomes the origin of DSI. 

 
                              (a)                                         (b) 

Fig. 3. DSI of one scan line for stereo pair (a) stereo pair (b) constructed DSI. 

Parallelization: Fig. 4 shows the parallelization of DSI 

construction step. Every corresponding row of reference 

image and input image is processed in parallel. Thus for, M x 

N image, N rows are processed simultaneously and this builds 

up one level of parallelism, termed as single parallelism 

(SPAR).  

Recently CUDA invented a new way of parent child 

relationship in which one kernel function can be called from 

other kernel function. Using this functionality we develop one 

more level of parallelism. Within each row, matching cost, 

which is the absolute difference of corresponding pixel values 

in the reference and input images, is computed at the same 

time. This constitutes another level of parallelism, termed as 

double parallelism (DPAR).  In CUDA implementation, 

parent kernel assigns N child kernels to N scan line pairs and 

each child kernel assigns M threads to M element pairs to 

compute the absolute difference at the same time.  

 

 

 

 

Fig. 4. Computation of DSI in parallel. 

B. Dynamic Programming 

Concept: Dynamic programming helps in finding the 

minimum cost path. The first stage of finding the minimum 

cost path is to calculate the cost matrix C. We compute the 

cost of matching error as in (2).  

C(xR, xI)  =  min{C(xR-1, xI), C(xR-1, xI-1), 

C(xR, xI-1)}+ DSI (xR, xI)                          (2) 

where C(xR, xI)  is the cost at location (xR, xI)  and  DSI (xR, xI) 

is the DSI value at the same location. Three immediate 

previous neighbors of location (xR, xI) are considered to 

compute the cost C(xR, xI) as depicted in Fig. 5. The neighbor 

with lowest cost is selected and is added to DSI value to get 

the final cost. Here we do not consider occlusion cost for the 

same reason described in Kim et al. [18]. They do not include 

occlusion cost to remove the effect of its heuristic nature. 

Along with the computation of cost matrix, direction 

information at every point describing where the lowest value 

comes from is also stored in direction matrix D for 

backtracking 

       (M,M) 

        

        

   (xR,xI)       

        

        

        

(0,0)        

Fig. 5. Computation of cost matrix. 

 

Parallelization: Fig. 6 shows the calculation of cost matrix 

in parallel. All elements on the same anti-diagonal (same 

colored elements) are processed simultaneously using one 

thread for each element. Direction of minimum neighbor is 

also saved simultaneously in D to be used later for 

backtracking. This is one level of parallelism and we termed it 

as SPAR.  

 
Fig. 6. Parallel computation of cost matrix by following anti-diagonals. 

To exploit the new functionality for DPAR in CUDA, we 

adopt to use parallel framework for DP proposed by Kiszkis 

et al. [19]. They introduced the concept of DPAR to 

implement DP to find the most similar DNA among many 

kidney donors and donees. DPAR consists of inter-block 

parallelism and intra-block parallelism. Fig. 7 shows the 

division of DSI into multiple blocks to accommodate 

inter-block parallelism. Rhombus and triangle type blocks are 

defined and the blocks on the same diagonal can be processed 

in parallel. Fig. 8 shows the inside detail of each block. All the 

elements on the same diagonal can be processed at the same 

DSI1 

DSIK 

DSIN 
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time and this constitutes intra-block parallelism. In CUDA 

implementation, parent kernel assigns child kernel to each 

block and each child kernel assigns threads to elements in a 

block. The number of threads assigned is dependent upon the 

number of elements on the same diagonal and the shape of 

block. Rhombus type block will maintain the same number of 

threads for all of its diagonals, whereas triangle type block 

will have either increasing or decreasing number of threads 

depending on its topology.  

 

 
Fig. 7. Block setup for inter-block parallelism. 

 

 
Fig. 8. Intra-block parallelism. 

C. Disparity Computation 

Concept: Direction matrix D was saved along with the 

computation of cost matrix. Matching path is found by 

tracking back the saved direction from upper right corner to 

lower left corner of D. Fig 9 illustrates this step. The white 

line lying from upper right to lower left is called zero disparity 

line. Matching path is depicted in red. The vertical distance 

between the zero disparity line and matching path is the 

disparity of reference image. Similarly the horizontal distance 

between the zero disparity line and matching path is the 

disparity of input image 

Parallelization:  All the elements on zero disparity line are 

fed to parent kernel function which calls M child kernel 

functions. Every child kernel generates two threads, one for 

the horizontal distance calculation and other for the vertical 

distance calculation. Hence the DPAR is achieved. Computed 

disparities are sent to disparity refinement step to remove 

possible disparity noise. 

 
Fig. 9. DSI image with matching path. 

D. Disparity Refinement 

Concept: After getting the initial disparity map in the 

previous step, disparity values are further refined. For this 

purpose, we use a 3 × 3 median filter. 

Parallelization: M
2
 threads are generated and assigned to 

M × M elements to perform median filtering. 

  

IV. EXPERIMENTAL RESULTS 

The experiment is performed in a following environment. 

Test image pairs and corresponding ground truths are from 

Middlebury stereo vision page. 

CPU : 3 GHz, Quad core, i5  

RAM : 16G 

GPU : NVIDIA GTX 780 with  2304 CUDA cores 

Parallel programming language  : CUDA 5.5 

We run the proposed algorithm in two different scenarios: 

SPAR and DPAR. In SPAR, only one kernel is used with 

multiple threads, whereas, in DPAR, one parent kernel, 

multiple child kernels, and multiple threads are used. We also 

run non-parallel version of the proposed algorithm. Fig. 10 

and Fig. 11 show the disparity results (with respect to 

reference image) of the proposed algorithm. The brighter the 

value is, the closer the object is to the camera.  Fig. 10(a) and 

(b) are left and right images of Tsukuba pair respectively. Fig. 

10(c) and (d) are disparity results for before refinement and 

after refinement respectively. As can be seen in both disparity 

results, disparities at depth boundaries are not crisp. This is 

due to the inherent limitation of DSI based approaches where 

disparities of neighboring locations cannot change abruptly. 

Other than this, light in the very front, human sculpture, desk, 

camera, and book shelves show reasonably good depth 

(disparity) appearances. Fig. 10(d), the refined version of Fig. 

10(c), exhibits better results where disparity noise (especially 

on the book shelves) is almost completely removed. Fig. 11(a) 

and (b) are left and right images of Cone pair respectively. Fig. 

11(c) and (d) are disparity results for before refinement and 

after refinement respectively. Similar observation can be 

made as in Fig. 10. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Disparity results for Tsukuba pair  (a) left image, (b) right image, (c) 

disparity before refinement, and (d) disparity after refinement. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Disparity results for Cone pair, (a) left image, (b) right image, (c) 

disparity before refinement, and (d) disparity after refinement. 

 

Next we compare the execution speed of three versions of 

implementations: non-parallelism (NPAR), SPAR, and 

DPAR. Table I shows the execution time for each functional 

block of the algorithm and the total time. As was clearly 

expected, DPAR performs best and NPAR performs worst. 

Actual speedup is different for different parts of the algorithm. 

SPAR performs 2.5~10 times faster than NPAR, whereas 

DPAR performs 20~25 times faster than NPAR depending on 

the parts of the algorithm. Disparity refinement supports only 

SPAR, was the most time-consuming process, and governs 

the total execution time. Excluding disparity refinement, total 

times taken for NPAR, SPAR, and DPAR are 40, 11, and 1.9 

µsecs respectively. Thus there are speedups of 4 and 20 times 

for SPAR and DPAR over NPAR respectively. 

 
TABLE. I: EXECUTION TIME (µSEC) OF DIFFERENT APPROACHES.  

 
DSI 

construction 
DP 

Disparity 

computation 

Disparity 

refinement 

Total 

Time 

Taken 

NPAR 10 20 10 160 200 

SPAR 2 8 1 35 46 

DPAR 0.5 1 0.4 NA (35) 36.9 

 

V. DISCUSSION 

Stereo vision is a useful way of obtaining depth information 

where stereo matching is a necessary step. There are many 

approaches in stereo matching among which we select to use 

DSI based approach since it seems most suitable for parallel 

implementation. We proposed the algorithm that consists of 

four steps. They are DSI construction, DP, disparity 

computation, and disparity refinement. We suggested the 

concept of SPAR and DPAR of CUDA for the first three steps. 

However the fourth step could only be implemented in SPAR. 

We generated the disparity results that are reasonably good 

and showed that the disparity after refinement is better than 

the one before refinement. We also compared the execution 

time of three scenarios depending on the level of parallelism 

and confirmed that DPAR performed best. 

Though the proposed method showed reasonably good 

results in terms of execution time, disparities at depth 

boundaries are still fuzzy. In execution time, disparity 

refinement, doing only median filtering, governs the total 

execution time. We may need some other speedy way of 

disparity refinement. Improvement on these is intended for 

future research. 
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