

Abstract—Stereo matching techniques are used to extract 3D

information from 2D stereo pair of images. It can be classified

into feature based approach, window (area) based approach,

and optimization based approach. Feature based approach

generally generates sparse disparity map with high accuracy

and low execution time. Window based approach produces

dense disparity map with low accuracy and low execution time.

Optimization based approach generates dense disparity map

with high accuracy and high execution time. Since the ultimate

goal of stereo matching is to obtain dense disparity map with

high accuracy and low execution time, we choose to select

optimization based approach and implement it in parallel

framework to overcome execution speed deficiency. There are

several optimization methods including dynamic programming,

energy minimization, and graph algorithms. We choose to use

dynamic programming based on disparity space image (DSI)

since it is most appropriate for parallel framework. In this paper,

we propose a new parallel algorithm and framework for DSI

construction, dynamic programming (DP), and disparity

computation using Compute Unified Device Architecture

(CUDA). We tested the method on several stereo pairs and found

that the method shows remarkable speedup while preserving the

quality at a reasonable level.

Index Terms—Stereo matching, DSI, CUDA.

I. INTRODUCTION

Researchers have given special attention to stereo vision as

it is capable of acquiring disparity and hence the depth

information of an observed scene. Many stereo vision

techniques are using two adjacent forward-facing cameras,

where each camera produces a 2D projection of the scene.

Stereo vision techniques help in extracting 3D information

using stereo pair taken by cameras. 3D information is very

useful as it surmounts the problems and limits related to 2D.

Stereo matching is a crucial step in stereo vision. For stereo

matching, one image is taken as a reference image and the

other as an input image. The pixels from reference image are

matched with those of input image. Assuming the rectification

is done, the horizontal distance between two matched pixels is

termed as disparity. This disparity information is then

translated into depth up to the scale factor. Fig. 1 shows one

example stereo pair and ground truth of disparity map taken

from Middlebury stereo vision page mentioned in Scharstein

et al. [1].

Stereo matching algorithms can be classified into feature

based approach, window (area) based approach, and

optimization based approach. In feature based methods,

Manuscript received November 24, 2013; revised January 24, 2014.

The authors are with the Myongji University, Yongin, 449-728, Korea

(e-mail: aamergcu@hotmail.com, soh@mju.ac.kr, kit@mju.ac.kr).

various features were used. They are regions [2], [3], lines [4],

[5], and points [6], [7]. For feature based matching, methods

using spatial relations or invariant descriptors, relaxation

method, and wavelets were proposed. In area based methods,

no features are selected and regularly tessellated areas are

usually used for matching. Area based matching methods can

be categorized into three groups. They are cross correlation

(CC)-like methods, Fourier transform-based methods, and

mutual information methods. CC-like methods include

normalized cross correlation (NCC), sum of squared

difference (SSD), sum of absolute difference (SAD), and

structural similarity (SSIM). Fourier transform-based

methods include phase correlation and extended phase

correlation [8]. Mutual information methods make use of joint

and conditional entropy concepts. In optimization based

methods, matching cost is computed and aggregated, and

usually global optimization methods such as DP [9], energy

minimization [10], and graph algorithms [11] are applied.

 (a) (b) (c)

Fig. 1. Stereo pair with ground truth (a). reference image, (b) input image,

and (c) ground truth.

Feature based approach generally produces sparse

disparity map with high accuracy and low execution time.

Window based approach generates dense disparity map with

low accuracy and low execution time. Optimization based

approach produces dense disparity map with high accuracy

and high execution time. Since the ultimate goal of stereo

matching is to obtain dense disparity map with high accuracy

and low execution time, we choose to select optimization

based approach and implement it in parallel framework to

overcome execution speed deficiency. Among many

optimization based methods, we select to exploit DP based on

DSI since it seems most appropriate for implementing in

parallel framework. In this paper, we propose a new parallel

algorithm for DSI construction, DP, disparity computation,

and disparity refinement using Compute Unified Device

Architecture (CUDA) provided by NVIDIA. Unlike

conventional parallel algorithms having only a single level of

parallelism, we use two levels of parallelism.

This paper is organized as follows. Section II presents

related work and Section III explains the proposed method.

The experimental results are described in Section IV and

Section V concludes the paper.

A New Parallel Implementation of DSI Based Disparity

Computation Using CUDA

Aamer Mehmood, Youngsung Soh, and Intaek Kim

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

51DOI: 10.7763/IJCCE.2014.V3.291

II. RELATED WORK

In this section, several conventional DSI based stereo

matching methods are reviewed.

Bobick et al. [12] proposed DSI based method in the

presence of large occlusion. They used ground control points

(GCPs) to reduce the sensitivity to occlusion cost and

algorithmic complexity. GCPs are feature points that help in

strong matching. GCPs are used to avoid smooth transient

across depth discontinuities and allow disparity jumps that are

needed at depth boundaries. They also made use of intensity

edges since, in many cases, intensity edges and depth edges

coincide. Their method produced reasonably good disparity

results, but execution time is far from real time processing.

Furthermore their method considers only ortho-frontal

surfaces.

Tsai et al. [13] proposed a divide-and-conquer DSI

approach that is a mixture of feature based method and

optimization based method. Since feature based method alone

is not able to generate dense disparity map, DSI based method

is added. They first look for strong features and divide each

row of the image into pieces and then conquer them using DSI

based method. Thus strong features act the role of robust

disparity guideline and DSI based method produces dense

disparity map between features. Since strong features are used

first, this method works well for low textured area also.

However, due to feature finding and recursive nature of the

method, execution requires too much time. For instance, it

takes more than 20 minutes to process a stereo pair of 512 ×

512 images.

Otha et al. [14] used DP for inter scan line search and intra

scan line search for acquiring 3D information from stereo pair.

Inter scan line matching was used for matching the connected

edge, while intra scan line matching was for matching every

edge given the connected edges. The algorithm successfully

works for those images that contain the short connected edges,

but for long connected edges, long processing time is required.

Thus special type of hardware was used for segmenting the

objects from images and this made the algorithm hardware

dependent and costly.

 Baha et al. [15] used DSI based DP method that was based

on DSI construction and disparity map refinement. Window

matching is performed for DSI construction. Shifting window

of size 7×7 was used to avoid the recalculation of the sum of

aggregate cost for each pixel in the window. This approach

was efficient in terms of execution time but using window

based approach may produce a lot of matching errors at

disparity discontinuities.

Kim et al. [9] proposed DSI based method where they used

adaptive search region to reduce the computation time for cost

matrix calculation. Usually cost matrix is computed globally.

However, they did full search only at the centerline, found

matching path, and restricted search region for all other scan

lines within 5 lines up and down of the previous scan line, thus

reducing the computation time of cost matrix for DP. They

used different neighborhood configuration when computing

cost of each element in DSI. They also adopted regularization

process in building the DSI where they took the average of

DSI values of 1× 3 window to get final DSI value. Despite the

effort of reducing the computation time, this method still takes

too much time and is not suitable for real time applications.

For instance, it took almost 9 sec to process 512 × 512 stereo

image pair.

Some researchers start to use graphics processing unit

(GPU) with many cores to speed up the execution time for real

time applications.

Gibson et al. [16] used GPU for the first time for the

calculation of dense disparity map using semi global matching.

Their proposed method is based on Birchfield et al.’s work

[17]. Their method consists of cost computation, semi global

matching for cost optimization, and disparity refinement.

They are among the first who used GPU in stereo vision

problem. Since GPU was adopted, there was a speedup in

execution time. However, since the method was based on

window matching, it did not produce satisfactory enough

execution time that is crucial for real time applications.

Congote et al. [18] successfully implemented the algorithm

in CUDA using GPU. The cost per pixel was calculated by

aggregating the cost using SAD and optimal cost path is

calculated using DP for each scan line in their proposed

method. They used different GPUs for acquiring the running

time of conventional parallel DP algorithm and showed that

the GPU based algorithms exhibit lower execution time than

CPU based algorithm and produce stable disparity maps.

They tested five kinds of GPU boards with increasing number

of cores and concluded that the more the cores are, the faster

the performance is.

III. THE PROPOSED METHOD

As was mentioned in Section I, we choose to use DP based

optimization method utilizing DSI’s since it seems most

appropriate for implementing in parallel framework. Fig. 2

shows the block diagram of the method we selected. DSI

based DP method consists of four steps. They are DSI

construction, DP, disparity computation, and disparity

refinement. In the first step, DSI is constructed. In this paper,

we assume that rectification is already done. Thus each

corresponding row of reference image and an input image is

used to construct DSI. For M × N image, N DSI’s of size M ×

M are constructed. Thus DSI space becomes M × M × N. In

the second step, we perform DP consisting of two parts. In the

first part, matching cost is aggregated to compute cost matrix.

In the second part, backtracking is performed to designate the

minimum cost path. The third step of the method computes

disparities from each DSI and forms a whole disparity map.

The final step refines disparities to remove possible disparity

noise.

Fig. 2. Block diagram of the proposed method.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

52

Following subsections describe parallel implementation

algorithm for each step in Fig. 2.

A. DSI Construction

Concept: DSI represents the matching error between the

row of reference image and the corresponding row of input

image and can be obtained as in (1),

DSIn (xR, xI) = |IR (xR, n) - II (xI, n)| (1)

where IR (xR, n) is the pixel value of xR position of the n
th

 scan

line in the reference image and II (xI, n) is that of the input

image. The process of making DSI for one scan line is shown

in Fig. 3. Here a particular row indicated in white is used to

construct DSI. We use the convention that one particular row

from reference image is arranged horizontally from left to

right and corresponding row from input image is arranged

vertically from bottom to top to compute the absolute

differences of corresponding element pairs. Thus lower left

corner becomes the origin of DSI.

 (a) (b)

Fig. 3. DSI of one scan line for stereo pair (a) stereo pair (b) constructed DSI.

Parallelization: Fig. 4 shows the parallelization of DSI

construction step. Every corresponding row of reference

image and input image is processed in parallel. Thus for, M x

N image, N rows are processed simultaneously and this builds

up one level of parallelism, termed as single parallelism

(SPAR).

Recently CUDA invented a new way of parent child

relationship in which one kernel function can be called from

other kernel function. Using this functionality we develop one

more level of parallelism. Within each row, matching cost,

which is the absolute difference of corresponding pixel values

in the reference and input images, is computed at the same

time. This constitutes another level of parallelism, termed as

double parallelism (DPAR). In CUDA implementation,

parent kernel assigns N child kernels to N scan line pairs and

each child kernel assigns M threads to M element pairs to

compute the absolute difference at the same time.

Fig. 4. Computation of DSI in parallel.

B. Dynamic Programming

Concept: Dynamic programming helps in finding the

minimum cost path. The first stage of finding the minimum

cost path is to calculate the cost matrix C. We compute the

cost of matching error as in (2).

C(xR, xI) = min{C(xR-1, xI), C(xR-1, xI-1),

C(xR, xI-1)}+ DSI (xR, xI) (2)

where C(xR, xI) is the cost at location (xR, xI) and DSI (xR, xI)

is the DSI value at the same location. Three immediate

previous neighbors of location (xR, xI) are considered to

compute the cost C(xR, xI) as depicted in Fig. 5. The neighbor

with lowest cost is selected and is added to DSI value to get

the final cost. Here we do not consider occlusion cost for the

same reason described in Kim et al. [18]. They do not include

occlusion cost to remove the effect of its heuristic nature.

Along with the computation of cost matrix, direction

information at every point describing where the lowest value

comes from is also stored in direction matrix D for

backtracking

 (M,M)

 (xR,xI)

(0,0)

Fig. 5. Computation of cost matrix.

Parallelization: Fig. 6 shows the calculation of cost matrix

in parallel. All elements on the same anti-diagonal (same

colored elements) are processed simultaneously using one

thread for each element. Direction of minimum neighbor is

also saved simultaneously in D to be used later for

backtracking. This is one level of parallelism and we termed it

as SPAR.

Fig. 6. Parallel computation of cost matrix by following anti-diagonals.

To exploit the new functionality for DPAR in CUDA, we

adopt to use parallel framework for DP proposed by Kiszkis

et al. [19]. They introduced the concept of DPAR to

implement DP to find the most similar DNA among many

kidney donors and donees. DPAR consists of inter-block

parallelism and intra-block parallelism. Fig. 7 shows the

division of DSI into multiple blocks to accommodate

inter-block parallelism. Rhombus and triangle type blocks are

defined and the blocks on the same diagonal can be processed

in parallel. Fig. 8 shows the inside detail of each block. All the

elements on the same diagonal can be processed at the same

DSI1

DSIK

DSIN

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

53

time and this constitutes intra-block parallelism. In CUDA

implementation, parent kernel assigns child kernel to each

block and each child kernel assigns threads to elements in a

block. The number of threads assigned is dependent upon the

number of elements on the same diagonal and the shape of

block. Rhombus type block will maintain the same number of

threads for all of its diagonals, whereas triangle type block

will have either increasing or decreasing number of threads

depending on its topology.

Fig. 7. Block setup for inter-block parallelism.

Fig. 8. Intra-block parallelism.

C. Disparity Computation

Concept: Direction matrix D was saved along with the

computation of cost matrix. Matching path is found by

tracking back the saved direction from upper right corner to

lower left corner of D. Fig 9 illustrates this step. The white

line lying from upper right to lower left is called zero disparity

line. Matching path is depicted in red. The vertical distance

between the zero disparity line and matching path is the

disparity of reference image. Similarly the horizontal distance

between the zero disparity line and matching path is the

disparity of input image

Parallelization: All the elements on zero disparity line are

fed to parent kernel function which calls M child kernel

functions. Every child kernel generates two threads, one for

the horizontal distance calculation and other for the vertical

distance calculation. Hence the DPAR is achieved. Computed

disparities are sent to disparity refinement step to remove

possible disparity noise.

Fig. 9. DSI image with matching path.

D. Disparity Refinement

Concept: After getting the initial disparity map in the

previous step, disparity values are further refined. For this

purpose, we use a 3 × 3 median filter.

Parallelization: M
2
 threads are generated and assigned to

M × M elements to perform median filtering.

IV. EXPERIMENTAL RESULTS

The experiment is performed in a following environment.

Test image pairs and corresponding ground truths are from

Middlebury stereo vision page.

CPU : 3 GHz, Quad core, i5

RAM : 16G

GPU : NVIDIA GTX 780 with 2304 CUDA cores

Parallel programming language : CUDA 5.5

We run the proposed algorithm in two different scenarios:

SPAR and DPAR. In SPAR, only one kernel is used with

multiple threads, whereas, in DPAR, one parent kernel,

multiple child kernels, and multiple threads are used. We also

run non-parallel version of the proposed algorithm. Fig. 10

and Fig. 11 show the disparity results (with respect to

reference image) of the proposed algorithm. The brighter the

value is, the closer the object is to the camera. Fig. 10(a) and

(b) are left and right images of Tsukuba pair respectively. Fig.

10(c) and (d) are disparity results for before refinement and

after refinement respectively. As can be seen in both disparity

results, disparities at depth boundaries are not crisp. This is

due to the inherent limitation of DSI based approaches where

disparities of neighboring locations cannot change abruptly.

Other than this, light in the very front, human sculpture, desk,

camera, and book shelves show reasonably good depth

(disparity) appearances. Fig. 10(d), the refined version of Fig.

10(c), exhibits better results where disparity noise (especially

on the book shelves) is almost completely removed. Fig. 11(a)

and (b) are left and right images of Cone pair respectively. Fig.

11(c) and (d) are disparity results for before refinement and

after refinement respectively. Similar observation can be

made as in Fig. 10.

(a)

(b)

(c)

(d)

Fig. 10. Disparity results for Tsukuba pair (a) left image, (b) right image, (c)

disparity before refinement, and (d) disparity after refinement.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

54

(a)

(b)

(c)

(d)

Fig. 11. Disparity results for Cone pair, (a) left image, (b) right image, (c)

disparity before refinement, and (d) disparity after refinement.

Next we compare the execution speed of three versions of

implementations: non-parallelism (NPAR), SPAR, and

DPAR. Table I shows the execution time for each functional

block of the algorithm and the total time. As was clearly

expected, DPAR performs best and NPAR performs worst.

Actual speedup is different for different parts of the algorithm.

SPAR performs 2.5~10 times faster than NPAR, whereas

DPAR performs 20~25 times faster than NPAR depending on

the parts of the algorithm. Disparity refinement supports only

SPAR, was the most time-consuming process, and governs

the total execution time. Excluding disparity refinement, total

times taken for NPAR, SPAR, and DPAR are 40, 11, and 1.9

µsecs respectively. Thus there are speedups of 4 and 20 times

for SPAR and DPAR over NPAR respectively.

TABLE. I: EXECUTION TIME (µSEC) OF DIFFERENT APPROACHES.

DSI

construction
DP

Disparity

computation

Disparity

refinement

Total

Time

Taken

NPAR 10 20 10 160 200

SPAR 2 8 1 35 46

DPAR 0.5 1 0.4 NA (35) 36.9

V. DISCUSSION

Stereo vision is a useful way of obtaining depth information

where stereo matching is a necessary step. There are many

approaches in stereo matching among which we select to use

DSI based approach since it seems most suitable for parallel

implementation. We proposed the algorithm that consists of

four steps. They are DSI construction, DP, disparity

computation, and disparity refinement. We suggested the

concept of SPAR and DPAR of CUDA for the first three steps.

However the fourth step could only be implemented in SPAR.

We generated the disparity results that are reasonably good

and showed that the disparity after refinement is better than

the one before refinement. We also compared the execution

time of three scenarios depending on the level of parallelism

and confirmed that DPAR performed best.

Though the proposed method showed reasonably good

results in terms of execution time, disparities at depth

boundaries are still fuzzy. In execution time, disparity

refinement, doing only median filtering, governs the total

execution time. We may need some other speedy way of

disparity refinement. Improvement on these is intended for

future research.

ACKNOWLEDGMENT

This work (Grants No. C0005448) was supported by

Business for Cooperative R&D between Industry, Academy,

and Research Institute funded by Korea Small and Medium

Business Administration in 2012.

REFERENCES

[1] D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms," International Journal

of Computer Vision, vol. 47, pp. 7-42, 2002.

[2] J. Flusser and T. Suk, “A moment-based approach to registration of

images with affine geometric distortion,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 32, pp. 382–387, Mar 1994.

[3] M. Roux, “Automatic registration of SPOT images and digitized

maps,” in Proc. the IEEE International Conference on Image

Processing, Lausanne, Switzerland 1996, vol. 2, pp. 625–628.

[4] J. Canny, “A computational approach to edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp.

679–698, Nov 1986.

[5] D. Shin, J. K. Pollard, and J. P. Muller, “Accurate geometric correction

of ATSR images,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 35, pp. 997–1006, Jul 1997.

[6] S. Banerjee, D. P. Mukherjee, and D. D. Majumdar, “Point landmarks

for registration of CT and NMR images,” Pattern Recognition Letters,

vol. 16, pp. 1033–1042, 1995.

[7] Q. Zheng and R. Chellapa, “A computational vision approach to image

registration,” IEEE Transactions on Image Processing, vol. 2, pp.

311–325, July 1993.

[8] E. D. Castro and C. Morandi, “Registration of translated and rotated

images using finite Fourier transform,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 9, pp. 700-703, Sept 1987.

[9] C. H. Kim, H. K. Lee, and Y. H. Ha, “Disparity space image based

stereo matching using optimal path searching,” Image and Video

Communications and Processing, vol. 5022, pp. 752-760, 2003.

[10] J. Sun, Y. Li, S. B. Kang, and H. Y. Shum, “Symmetric stereo

matching for occlusion handling,” in Proc. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2005, vol. 2,

pp. 399–406.

[11] O. Veksler, “Extracting dense features for visual correspondence with

graph cuts,” in Proc. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2003, vol. 1, pp. 689–694.

[12] A. F. Bobick, “Large occlusion stereo,” Int’l J. Computer Vision, vol.

33, no. 3, pp. 181-200, 1999.

[13] C. J. Tsai and A. K. Katsaggelos, "Dense disparity estimation with a

divide-and-conquer disparity space image technique," IEEE Trans.

Multimedia, vol. 1, pp. 18-29, Mar. 1999.

[14] Y. Ohta and T. Kanade, “Stereo by intra- and inter- scanline search

using dynamic programming,” IEEE Trans. Pattern Anal. Machine

Intelligence, vol. 7, Mar. 1985.

[15] N. Baha and S. Larabi, “Real-time disparity map computation based on

disparity space image,” in Proc. The 13th International Arab

Conference on Information Technology, 2012, pp. 10-13.

[16] J. Gibson and O. Marques, "Stereo depth with a unified architecture

GPU,” in Proc. IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, June 2008, pp. 1–6.

[17] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is

insensitive to image sampling,” IEEE Transactions on Pattern

Analysis and Machine Intellignce, vol. 20, no. 4, 1998.

[18] J. E. Congote, J. Barandiaran, I. Barandiaran, and O. Ruiz, "Realtime

dense stereo matching with dynamic programming in CUDA," in Proc.

Donostia-San Sebastian, Spain, Sept. 2009, pp. 9-11.

[19] M. Kiszkis, K. Zarzycki, and G. Kokosinski, “Dynamic programming

on CUDA, finding the most similar DNA,” Presentation material, IBM

Corporation, 2012.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

55

Aamer Mehmood was born in Kasur, Pakistan on

May 1, 1988. He got BS in electrical engineering in

2011 from Govt. College University in Lahore,

Pakistan. He entered a master course in information

and communication engineering in Myongji

University in 2012.

His current interest of research includes object

extraction, stereo vision and parallel algorithms for

image processing.

Youngsung Soh was born in Seoul, Korea on Mar. 4,

1956. He got BS in electrical engineering in 1978 from

Seoul National University in Seoul, Korea. He

obtained MS and PhD in computer science from the

University of South Carolina in Columbia, South

Carolina, USA in 1986 and 1989, respectively.

He served in the Korean army from June 1980 to

Sept. 1982. He worked in Systems Engineering

Research Institute in Korea as a senior researcher from

Sept. 1989 to Feb. 1991. He joined Myongji University in Korea from Mar.

1991 and is currently a full professor in the Dept. of Information and

Communication Engineering.

His current interest of research includes object tracking, stereo vision, and

parallel algorithms for image processing.

Prof. Soh is a member of Korea Information Processing Society and Korea

Signal Processing Systems Society.

Intaek Kim was born in Seoul, Korea in 1960. He

received BS and MS in electronics engineering from

Seoul National University in Seoul, Korea in 1980 and

1984 respectively. He obtained PhD in electrical

engineering from Georgia Institute of Technology in

Atlanta, Georgia, USA in 1992.

He worked for Goldstar central research lab from

1993 to 1995 as a senior engineer and joined Myongji

University from 1995. He is now a professor in the Dept. of Information and

Communication Engineering. His recent publications deal with the area of

face recognition, hypersepctral image and MR imaging.

His research interest includes pattern recognition, image processing and

smart grid area.

Prof. Kim is a member of Korean Institute of Electronics Engineer.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

56

