



Abstract—Classification and searching time series in the

multidimensional space is a big challenge. There has been much

research work on this field for many years. TAX (Textual

ApproXimation) is a method for searching time series data such

as stock or electrocardiogram data. The main idea behind TAX

is extract a set of temporal-terms from time series data to

approximate using document retrieval methods. The main

problem of applying TAX to multidimensional data, such as

moving object trajectory data is that how we extract

temporal-terms from multidimensional data. In this paper, we

propose a novel method to obtain temporal-terms by

decomposing original multidimensional data into smaller

segmentations, deploying a clustering method to group those

segmentations into groups, and assigning a temporal-term for

each group. Our research focuses on two-dimensional moving

object, representing trajectories and on classification of a large

set of the moving object trajectories. The experimental results

confirm that our proposed method is effective in

multi-multidimensional data classification.

Index Terms—Trajectory clustering, classification, clustering

framework.

I. INTRODUCTION

Recently, the analysis and research on moving objects have

becoming one of the most important technologies to be used

in various applications and fields such as GIS, navigation

systems and location based information systems. Trajectory

mining technologies lead to various types of applications. For

instance a commercial system in sport can track balls, players

and referees in real time [1], and can analyze them to find

better game strategies and to predict a future moving

trajectory.

In this paper, we propose a moving object trajectory

classification method which employs the idea from TAX

[2].The main idea of our method is that given a set of

trajectories, each trajectory is transformed into a sequence of

temporal terms and the transformed trajectories are clustered

using the temporal term sequence for trajectory classification.

We first segment each trajectories into many sub-trajectories.

Using a clustering method, we are able to automatically

classify those sub-trajectories into groups, which each group

represents similar moving pattern. We call those groups

T-Terms. Using T-Term, each trajectory is constructed into a

sequence of T-Terms, call T-doc. As T-doc has a

document-like structure, we are able to classify T-docs data

using one of the traditional document classification methods.

Fig. 1 gives you an example of how this textual

Manuscript received October 4, 2013; revised January 23, 2014.

The authors are with the Ritsumeikan University, Japan (e-mail:

doxuanhuy@gmail.com).

approximation technique works with trajectory data. Fig. 1

shows two trajectories which are represented as red curves:

Tr1 and Tr2, each of which has its own moving pattern. Using

our method, we are able to symbolize Tr1 as:



{A1,A2,A3,A4}, Tr2 as



{A1,A5,A6}. Each



Ai is a T-term,

representing a local moving pattern. For example,



A1representing a pattern which can be explained like: moving

in the NE direction first, then rotating clockwise a bit. As

indicating as this example, using T-Term, we are able to

represent the original set of trajectories into a set of T-Term

sequences, call T-doc



Tdock {Ak,1,Ak,2,..,Ak,kn} .

Clustering T-docs data set is much easier than clustering

trajectories data, because we just need to cluster 1-dimension

data, and a similarity between T-docs is much simple to

calculate.

In this paper, we propose a method of classification of

moving object trajectories based on textual approximation.

Examples of moving object trajectories include car

movements on roads, movements of balls and players in

sports, and tracks of typhoons or hurricanes.

Fig. 1. Textual approximation example.

II. RELATED WORK

There are many studies focus on trajectory pattern mining.

Yi et al. use the traditional technique called DTW (Dynamic

Time Warping) which was originally used in speech

recognition, to provide robust and generic method to query

similar trajectories [3]. DTW is easy to implement and

compute. Another research in using DTW to create envelope

queries to index trajectory was carried by Let et al. [4].

Agrawal et al. use Discrete Fourier Transform (DFT) to

transform trajectories to multi-dimensional points, then using

Euclidean distance to calculate similarity between points to

find similar trajectories [5].

Another approach is to find patterns in trajectories, by

analysing spatial constraints of the object's lifeline in

Classification of Multi-Dimensional Trajectories Using

Textual Approximation

Huy Xuan Do, Hung-Hsuan Huang, and Kyoji Kawagoe

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

21DOI: 10.7763/IJCCE.2014.V3.285

geographic space. Laube et al. proposed a geographic data

mining approach to detect generic aggregation patterns such

as flocking behaviour and convergence in geo-spatial lifeline

data [6]. One of the approaches similar to their system is to

use and find similar sub-trajectories instead of the whole. In

an attempt to develop more robust measures, Lee et al. use

some customized distance function and DBSCAN-like

algorithm to cluster group of similar sub trajectories [7].

Gudmudsson et al. use pre-defined coarse terms called Motifs

to describe patterns [8]. A motif like “first move straight then

start a long curve to the right” is described. Buchin et al.

proposed an algorithms for computing the most similar

sub-trajectories under the measure of their average distance at

corresponding time, assuming the two trajectories are given as

two polygonal, possibly self-intersecting lines [9]. This

approach was explored further by Buchin et al. [10], provide

linear-time algorithm with better performance. Some

researchers focus on searching/querying trajectories. Chen et

al. proposed an algorithm to find the k Best Connected

Trajectories (k-BCT), query for searching trajectories by

multiple geographical locations [11]. Generally, the k-BCT

query is a set of locations indicated by coordinates like

{latitude, longitude}, with those type of queries, a nameless

beach or any arbitrary place approximated by the centre

location.

As we see in the existing approaching, they focus on

querying trajectory, or cluster segments of trajectories data in

a small preriod of time, to find region of interest. However, a

generic method to cluster trajectories which have common

patterns of moving object trajectories is still lacking.

III. A METHOD OF TRAJECTORY CLASSIFICATION BASED ON

TEXTUAL APPROXIMATION

A. Motivation and Approach

To highlight the main idea of our method, Fig. 2 shows four

sample trajectories TR1, TR2, TR3, TR4. It can be easily seen

that TR1 and TR2 have very similar patterns of moving, as

well as TR3 and TR4. So our expect result after implement our

method to classify those trajectories, is that we will have 2

groups: Group1 and Group2. Group1 includes {TR1, TR2},

and Group 2 includes {TR3, TR4}. Specifically stating, a new

trajectory can be classified in one of the two groups after they

are constructed to be clustered. To realize this problem, our

method first extracts local features of each trajectory and

represents similar features as the same word called T-Term.

For example, the pattern “move down 45 degree then move up

45 degree” is represented as T-Term A1 as shown in Fig. 2.

Consequenty, these four sample trajectories are represented

as a document-like structure called T-Doc as follow:

1) TR1: {A1, A2}

2) TR2 : {A1, A2}

3) TR3 : {A3}

4) TR4 : {A3}

To compare similarity between T-doc data, we use Longest

Common Subsequence distance (the LCS distance). Using

this LCS distance, it's easy to see that in above example, TR1

and TR2 belong to the same cluster, as well as TR3 and TR4

belong to the same cluster.

Fig. 2. Sample of textual approximation.

To implement our method, we need to realize the following

functions:

1) How to extract and symbolize feature points

2) How to construct and cluster T-docs data

To realize these functions, we divide our proposed method

into the following phases as shown in Fig. 3:

Phase 1: T-Terms collection phase: To extract feature

points and find similar features, we first use an algorithm used

in polygonal curves approximation technique to remove

unnecessary points (trajectory simplification). Trajectory

simplification step is needed because the original data

normally contains many noises, which make it very difficult to

find global feature points. After simplification process, we

consider the remaining points as “feature points”. To

represent those points, a feature point representation data is

constructed from three contiguous points around the feature

point called sub-trajectory. We then collect all

sub-trajectories and use a clustering technique to cluster those

sub-trajectories data set into groups which sub-trajectories in

the same group have a similar moving pattern. Each group is

considered as a T-Term. We store those T-Terms into the

database to use in the next phase.

Phase 2: T-Docs classification phase: After collecting

T-Terms, we then build T-Docs by approximating the original

trajectory data by using T-Term database. After

approximating original trajectories into T-Docs, we classify

those T-Docs using a DBScan [12] like algorithm which uses

LCS as a distance function

Fig. 3. Our method flow.

B. T-Terms Collection Phase

1) Trajectory simplification

Raw trajectory data normally contains a lot of noises,

which leads to some unexpected result when we attempt to

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

22

extract feature points such as falling into local-minimum or

local-maximum. There are many existing methods to simplify

trajectory data based on traditional techniques to approximate

polygonal curves with minimum number of line segments or

minimum error such as (min-# algorithm) [13], or

Douglas-Peucker algorithm (DP) [14].

The min-# algorithm can produce a good result and also

can simplify curves without loss too much data. However its

computation cost is up to



O(N 2)which is quite hard to apply

in real-life applications. Therefore we use Douglas-Peucker

algorithm to simplify trajectories. The main idea of

Douglas-Peucker is, given a polyline specified by a sequence

of N points



p1,p2,.., pN and a distance threshold



 , we

can derive a new polyline with fewer points without deviating

from the original polyline by at most



 . Douglas-Peucker

algorithm initially constructs the line segment



p1p , then

identifies the point



pi , the farthest point from the line. If this

point perpendicular distance to the line is within



 , then the

algorihm returns



p1pN and terminates. Otherwise, the line is

splitter at



pi and the algorithm is recursively applied to the

sub polylines



p1, p2,.., pi and



pi,pi1,..,pN .

To get the most significant



 value, the value of



 is

changed as 2%, 5%, 10%, 20% value of the overall distance

of the trajectory. From this experiment we found that 5% of

the overall trajectory length can keep the most significant

points of the original data.

1

2 1

1

5
((,))

100

N

i i

i

L p p






  



L2(pi1,pi)is Euclide distance between two points



pi1

and



pi . Result of Douglas-Peucker is shown in Fig. 4. From

this figure, it is easily seen that Douglas-Peucker algorithm is

very effective in reducing noise. Douglas-Peucker is able to

reduce up to over 70% points which are considered as noises.

Fig. 4. Douglas-Peucker algorithm result sample.

2) Feature point representation

After pre-processing trajectory data with Douglas-Peucker

algorithm, the remaining points are considered as “feature

points”. For each point, a sub-trajectory of three contiguous

points around itself is obtained, as shown in Fig. 5. We want

each features not to depend on spatial position, so that we

normalize this trajectory to its root which means that we

ignore time information from the original data. Therefore,

given a feature point



xi,yi , we will get the feature matrix

of this point as below



0 xi  xi1

0 yi  yi1

xi1  xi1

yi1  yi1











The above matrix is hard to collect and do clustering to

segment, so we transform this matrix into a vector form



0,xi  xi1,xi1  xi1,0,yi  yi1,yi1  yi1

Our research focuses on clustering trajectory by its spatial

characteristic. Ignoring time t parameter does not affect

clustering result. The original trajectory data is represented as

6*n matrix as below (n is number of feature points)



0 x2  x1 x3  x1 0 y2  y1 y3  y1

0 x3  x2 x4  x2 0 y3  y2 y4  y2

...

0 xn  xn1 xn1  xn1 0 yn  yn1 yn1  yn1



















Fig. 5. Feature point representation.

3) Trajectory clustering

There are many existing clustering methods, among which,

the most famous one is K-means. The K-means algorithm

purpose is to minimize a criterion of the form



d(xi, pc(i))
i

 which



d(xi,pc(i)) is normally the Euclidean

distance or in some case the Mahalanobis distance between

data-point



x i and the cluster to which it belongs



pc(i) .

K-means algorithm gives you a result where sub-trajectories

similar in distance, are grouped into the same cluster. As this

is not expected, we construct each group to contain

sub-trajectories which have similar pattern of moving.One of

famous extension of K-means algorithm is SKmeans

algorithm (Spherical K-means) [15]. SKmeans algorithm uses

cosine similarity. Using cosine similarity means that we are

able to cluster sub-trajectories which have similar shape.

Therefore, the proposed method employed SKmeans as

sub-trajectories clustering algorithm.

The standard SKmeans problem is to minimize



(1 cos(xi, pc(i)))
i

 . Given N rows matrix trajectory, and K

fixed number of centroids, the SKmeans algorithm is

described in Algorithm 1. We set the stopping criteria as no

more cluster assignments change. To fix number K of cluster,

we focus on the variation of a sub-trajectory. Each of feature

vector constructed from 2 vectors connect 3 contiguous points.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

23

Therefore, there are 2 points which are able to vary in 4 main

directions (west, north, south, east). Therefore, we will have

up to 4×4=16 degree of freedom. Accordingly, we chose

K=16 as number of centroids to cluster.

After clustering similar sub-trajectories into groups, we

name each group



W1,W2,...,W16
as T-Terms. A

representative feature of each group is a concept vector

obtained in SKmeans algorithm. We then store obtained

concept vectors representing groups into database (T-Terms

database) to use in the classification phase. Those concept

vectors are periodically recalculated to update with newest

data.

Algorithm 1. Skmeans with trajectory data.

Data: Trajectory matrix

Result: Cluster vectors, and vector assignment

 information (which cluster the vector belong)

1. Initialize clustering. Start with some initial partitioning of

the vector, namely



 j

(0) 
j1

N . Let



c j
(0) 

j1

N be the concept

vectors of the associated partitioning. Set iteration count t

2.



t 0
3. while Stopping criterion is not met do

4. for Each row



pi of trajectory matrix do

5. Compute



pi
T *cl

(t)
 for all



l 1,2,...,K ;

6. From all



pi
T *cl

(t)
 computed above, find j =

 argmax(



pi
T *cl

(t)
) (break ties arbitrary if



x i has

 largest cosine similarity with more than one

 concept vector);

7. Induce new partitioning



 j

(t1)  pi : j  argmax(pi
T *cl

(t)) ,1 j K

8. Update concept vectors:



s j  x i
xi  j

 ,



c j
(t1) 

s j

|| s j ||
,1 j K

9. end

10.



t t 1
11. end

C. T-Docs Classification Phase

Using T-Terms, we are able to construct each original

trajectory data into a sequence of T-term



(Wi) , called T-Doc

To classify T-Docs data, we carried out an DBScan type

clustering algorithm with LCS (Longest common

subsequence) as distance function. We need to redefine

original “Reachable” definition as in Definition 1.

Definition 1. two T-Docs



L1 and



L2 is density reachable

if LCS distance between



L1 and



L2 is greater than



min(length(L1),length(L2))

2

We proposed an algorithm which employ original idea

from DB-Scan algorithm. Our proposed algorithm main idea

is that, given a T-Doc as a seed, we then find all around

T-Docs which are reachable from the seed, then assign those

T-Docs to the cluster which is initialized by the seed. The

algorithm is highlighted at Algorithm 2.

IV. EVALUATION

We conducted some experiments to evaluate our method

with an artificial trajectory test data set. We used WACOM

BAMBOO Pen table to generate by drawing three types of

main patterns: triangle, rectangle and wave. This trajectory

data set contains the similar characteristics as real-life

trajectories which contain noises and variations of

sub-trajectories. We asked a group of 10 people to draw

Algorithm 2. Clustering T-doc algorithm.

Data: T-docs data

Result: Cluster of T-dcs

1. for Each unvisited T-doc T do

2. if T not belongs to any cluster then

3. init cluster



CT with T;

4.



Seed T ;

5.



type _of (CT) type _of (Seed);

6. for Each unvisited T-Doc T’ except Seed do

7. if Reachable(T’, Seed) then

8. add T’ to



CT

9. end

10. end

11. else

12. Next;

13. end

14. end

Those three patterns with both right hand and left hand.

Then, the test dataset are composed of 60 trajectories. Fig.6

shows some examples of our test data set.

Fig. 6. Sample input data.

We applied our proposed method to classify this set of

trajectories into groups that represent different patterns of

trajectories. Fig. 8, Fig. 9 and Fig. 10 shows three examples of

obtained clusters. The red bold line curve shows

representative of three clusters each of which corresponds to

one T-term. Although there were some minor noises but it can

be clearly seen that each T-Term represents a similar pattern

of sub-trajectories. Using T-Term databases, we can build a

T-Doc from original trajectories. For example, a wave pattern

input data shown in Fig. 6(b) was represented in T-Doc form

as



W16,W16,W13,W3,W2,W4,W16,W15,W8,W3,W7
 as

shown in Fig. 7.

We carried out an classification algorithm with Algorithm

2 and obtained the result of 7 clusters. Two clusters represent

the triangle pattern, two clusters represent the rectangle

pattern, and three clusters represent the wave pattern. A

T-Doc can be correctly clustered as far as it is similar to one of

these three patterns by our method. To evaluate, we calculate

the average precision as bellow:

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

24

Fig. 7. Textual Approximation of wave pattern.

Fig. 8. Sub-trajactories cluster result 1.

Fig. 9. Sub-trajactories cluster result 2.

Fig. 10. Sub-trajactories cluster result 3.

_
100%

_

correct set
precision

total set
 

correct_set is the number of correct clustered T-Docs, and

total_set is the number of total data set. The result is accurate

with overall 84% precision. We intend to do more detailed

evaluation, by comparing our method with other existing

methods.

V. CONCLUSION

In this paper, we propose a new generic textual

approximation method for moving object trajectories. Our

method is accurate from our preliminary experiment.

Remaining issues include: (1) application development based

on our method to show its effectiveness in real-life data

comparing with existing methods and (2) derivation of some

constraints in it.

ACKNOWLEDGMENT

This work is partially supported by KAKENHI

\#24300039 and also by MEXT-Supported Program for the

Strategic Research Foundation at Private Universities,

2013-2017.F.

REFERENCES

[1] Y. Zhang et al., “Discovering tactics in broadcast sports video with

trajectories,” in Proc. ICIMCS ’09, New York, USA, 2009, pp.

170–173.

[2] A. A. Maruf et al., “Time series classification method based on longest

common subsequence and textual approximation,” in Proc. ICDIM,

2012, pp. 130–137.

[3] B. K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of

similar time sequences under time warping,” in Proc. the Fourteenth

International Conference on Data Engineering, Washington D.C.,

USA, 1998, pp. 201–208.

[4] C. Lei et al., “Robust and fast similarity search for moving object

trajectories,” in Proc. SIGMOD ’05, New York, USA, 2005, pp.

491–502.

[5] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity

search in sequence databases,” in Proc. the 4th International

Conference on Foundations of Data Organization and Algorithms,

London, UK, 1993, pp. 69–84.

[6] P. Laube, M. V. Kreveld, and S. Imfeld, “Finding remo detecting

relative motion patterns in geospatial lifelines,” presented at 11th Int.

Symp. on Spatial Data Handling, 2004.

[7] J. G. Lee et al., “Trajectory clustering: a partition-and-group frame-

work,” in Proc. SIGMOD ’07, New York, USA, 2007, pp. 593–604.

[8] G. Joachim et al., “Of motifs and goals: mining trajectory data,” in

Proc. SIGSPATIAL ’12, New York, USA, 2012, pp. 129–138.

[9] M. V. Kreveld and J. Luo, “The definition and computation of

trajectory and subtrajectory similarity,” in Proc. the 15th Annual ACM

International Symposium on Advances in Geographic Information

Systems, New York, USA, 2007, pp. 44:1–44:4.

[10] K. Buchin, M. Buchin, M. V. Kreveld, and J. Luo, “Finding long and

similar parts of trajectories,” in Proc. the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information

Systems, New York, USA, 2009, pp. 296–305.

[11] Z. B. Chen, H. T. Shen, X. F. Zhou, Y. Zheng, and X. Xie, “Searching

trajectories by locations: an efficiency study,” in Proc. the 2010 ACM

SIGMOD International Conference on Management of Data, New

York, USA, 2010, pp. 255–266.

[12] M. Ester, H. P. Kriegel, S. Jrg, and X. W. Xu, “A density- based

algorithm for discovering clusters in large spatial databases with

noise,” in Proc. KDD 1996, Portland, USA,1996, pp. 226–231.

[13] D. Z. Chen et al., “Space-efficient algorithms for approximating

polygonal curves in two dimensional space,” in Proc. COCOON ’98,

London, UK, 1998, pp. 45– 54.

[14] D. D. H. Peucker, “Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature,” The

Canadian Cartographer, vol. 10, no. 2, pp. 112–122, 1973.

[15] I. Dhillon and D. Modha. Concept Decompositions for Large Sparse

Text Data Using Clustering, 2001.

Huy Xuan Do was born in HaNoi, Viet Nam, on

September 1st, 1988. He is a second year master

student at Ritsumeikan University now. He received

BSc. in computer science from Ritsumeikan

University in 2011. His research interests are time

series data mining algorithm, text mining algorithm.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

25

Hung-Hsuan Huang received BSc. in computer

science from National Chen-Chi University, Taiwan in

1998 and MSc. from National Taiwan University,

Taiwan. He received his PhD from the Kyoto

University in 2009. Currently he is a professor at the

Ritsumeikan University, Japan. He has research

interest in embodied conversational agent and virtual

3D space. He is a member of JSAI, IPSJ, TAAI, HIS,

ACM and IEICE.

Kyoji Kawagoe received B.Eng. and M.Eng in

electronic engineering from Osaka University in 1975

and 1977, respectively. He also received Ph.D from

Tsukuba University in 1992. He joined Ritsumeikan

University in 1997, while he had worked for NEC

Corporation since 1977. He is currently a full professor

of Collage of Information Science and Engineering,

Ritsumeikan University. His research interests include

multimedia data engineering, ubiquitous computing and network related

software research and development. He is a member of IEEE, ACM, ACM

SIGMOD, Database Society of Japan, IEICE, and IPSJ.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

26

