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Abstract—Classification and searching time series in the 

multidimensional space is a big challenge. There has been much 

research work on this field for many years. TAX (Textual 

ApproXimation) is a method for searching time series data such 

as stock or electrocardiogram data. The main idea behind TAX 

is extract a set of temporal-terms from time series data to 

approximate using document retrieval methods. The main 

problem of applying TAX to multidimensional data, such as 

moving object trajectory data is that how we extract 

temporal-terms from multidimensional data. In this paper, we 

propose a novel method to obtain temporal-terms by 

decomposing original multidimensional data into smaller 

segmentations, deploying a clustering method to group those 

segmentations into groups, and assigning a temporal-term for 

each group. Our research focuses on two-dimensional moving 

object, representing trajectories and on classification of a large 

set of the moving object trajectories. The experimental results 

confirm that our proposed method is effective in 

multi-multidimensional data classification. 

 
Index Terms—Trajectory clustering, classification, clustering 

framework. 

 

I. INTRODUCTION 

Recently, the analysis and research on moving objects have 

becoming one of the most important technologies to be used 

in various applications and fields such as GIS, navigation 

systems and location based information systems.  Trajectory 

mining technologies lead to various types of applications. For 

instance a commercial system in sport can track balls, players 

and referees in real time [1], and can analyze them to find 

better game strategies and to predict a future moving 

trajectory. 

In this paper, we propose a moving object trajectory 

classification method which employs the idea from TAX 

[2].The main idea of our method is that given a set of 

trajectories, each trajectory is transformed into a sequence of 

temporal terms and the transformed trajectories are clustered 

using the temporal term sequence for trajectory classification. 

We first segment each trajectories into many sub-trajectories. 

Using a clustering method, we are able to automatically 

classify those sub-trajectories into groups, which each group 

represents similar moving pattern. We call those groups 

T-Terms. Using T-Term, each trajectory is constructed into a 

sequence of T-Terms, call T-doc. As T-doc has a 

document-like structure, we are able to classify T-docs data 

using one of the traditional document classification methods.  

Fig. 1 gives you an example of how this textual 

 
Manuscript received October 4, 2013; revised January 23, 2014. 

The authors are with the Ritsumeikan University, Japan (e-mail: 

doxuanhuy@gmail.com). 

approximation technique works with trajectory data. Fig. 1 

shows two trajectories which are represented as red curves: 

Tr1 and Tr2, each of which has its own moving pattern. Using 

our method, we are able to symbolize Tr1 as: 



{A1,A2,A3,A4}, Tr2 as 



{A1,A5,A6}. Each 



Ai  is a T-term, 

representing a local moving pattern. For example, 



A1representing a pattern which can be explained like: moving 

in the NE direction first, then rotating clockwise a bit. As 

indicating as this example, using T-Term, we are able to 

represent the original set of trajectories into a set of T-Term 

sequences, call T-doc 



Tdock {Ak,1,Ak,2,..,Ak,kn} . 

Clustering T-docs data set is much easier than clustering 

trajectories data, because we just need to cluster 1-dimension 

data, and a similarity between T-docs is much simple to 

calculate. 

In this paper, we propose a method of classification of 

moving object trajectories based on textual approximation. 

Examples of moving object trajectories include car 

movements on roads, movements of balls and players in 

sports, and tracks of typhoons or hurricanes. 

 
Fig. 1. Textual approximation example. 

 

II. RELATED WORK 

There are many studies focus on trajectory pattern mining. 

Yi et al.  use the traditional technique called DTW (Dynamic 

Time Warping) which was originally used in speech 

recognition, to provide robust and generic method to query 

similar trajectories [3]. DTW is easy to implement and 

compute. Another research in using DTW to create envelope 

queries to index trajectory was carried by Let et al. [4]. 

Agrawal et al. use Discrete Fourier Transform (DFT) to 

transform trajectories to multi-dimensional points, then using 

Euclidean distance to calculate similarity between points to 

find similar trajectories [5]. 

Another approach is to find patterns in trajectories, by 

analysing spatial constraints of the object's lifeline in 
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geographic space. Laube et al. proposed a geographic data 

mining approach to detect generic aggregation patterns such 

as flocking behaviour and convergence in geo-spatial lifeline 

data [6]. One of the approaches similar to their system is to 

use and find similar sub-trajectories instead of the whole.  In 

an attempt to develop more robust measures, Lee et al. use 

some customized distance function and DBSCAN-like 

algorithm to cluster group of similar sub trajectories [7]. 

Gudmudsson et al. use pre-defined coarse terms called Motifs 

to describe patterns [8]. A motif like “first move straight then 

start a long curve to the right” is described. Buchin et al. 

proposed an algorithms for computing the most similar 

sub-trajectories under the measure of their average distance at 

corresponding time, assuming the two trajectories are given as 

two polygonal, possibly self-intersecting lines [9]. This 

approach was explored further by Buchin et al. [10], provide 

linear-time algorithm with better performance. Some 

researchers focus on searching/querying trajectories. Chen et 

al. proposed an algorithm to find the k Best Connected 

Trajectories (k-BCT), query for searching trajectories by 

multiple geographical locations [11]. Generally, the k-BCT 

query is a set of locations indicated by coordinates like 

{latitude, longitude}, with those type of queries, a nameless 

beach or any arbitrary place approximated by the centre 

location. 

As we see in the existing approaching, they focus on 

querying trajectory, or cluster segments of trajectories data in 

a small preriod of time, to find region of interest. However, a 

generic method to cluster trajectories which have common 

patterns of moving object trajectories is still lacking. 

 

III. A METHOD OF TRAJECTORY CLASSIFICATION BASED ON 

TEXTUAL APPROXIMATION 

A. Motivation and Approach 

To highlight the main idea of our method, Fig. 2 shows four 

sample trajectories TR1, TR2, TR3, TR4. It can be easily seen 

that TR1 and TR2 have very similar patterns of moving, as 

well as TR3 and TR4. So our expect result after implement our 

method to classify those trajectories, is that we will have 2 

groups: Group1 and Group2. Group1 includes {TR1, TR2}, 

and Group 2 includes {TR3, TR4}. Specifically stating, a new 

trajectory can be classified in one of the two groups after they 

are constructed to be clustered. To realize this problem, our 

method first extracts local features of each trajectory and 

represents similar features as the same word called T-Term. 

For example, the pattern “move down 45 degree then move up 

45 degree” is represented as T-Term A1 as shown in Fig. 2. 

Consequenty, these four sample trajectories are represented 

as a document-like structure called T-Doc as follow: 

1) TR1: {A1, A2} 

2) TR2 : {A1, A2} 

3) TR3 : {A3} 

4) TR4 : {A3} 

To compare similarity between T-doc data, we use Longest 

Common Subsequence distance (the LCS distance). Using 

this LCS distance, it's easy to see that in above example, TR1 

and TR2 belong to the same cluster, as well as TR3 and TR4 

belong to the same cluster. 

 
Fig. 2. Sample of textual approximation. 

 

To implement our method, we need to realize the following 

functions: 

1) How to extract and symbolize feature points 

2) How to construct and cluster T-docs data 

To realize these functions, we divide our proposed method 

into the following phases as shown in Fig. 3: 

Phase 1: T-Terms collection phase: To extract feature 

points and find similar features, we first use an algorithm used 

in polygonal curves approximation technique to remove 

unnecessary points (trajectory simplification). Trajectory 

simplification step is needed because the original data 

normally contains many noises, which make it very difficult to 

find global feature points. After simplification process, we 

consider the remaining points as “feature points”. To 

represent those points, a feature point representation data is 

constructed from three contiguous points around the feature 

point called sub-trajectory. We then collect all 

sub-trajectories and use a clustering technique to cluster those 

sub-trajectories data set into groups which sub-trajectories in 

the same group have a similar moving pattern. Each group is 

considered as a T-Term. We store those T-Terms into the 

database to use in the next phase. 

Phase 2: T-Docs classification phase:  After collecting 

T-Terms, we then build T-Docs by approximating the original 

trajectory data by using T-Term database. After 

approximating original trajectories into T-Docs, we classify 

those T-Docs using a DBScan [12] like algorithm which uses 

LCS as a distance function 

 
Fig. 3. Our method flow. 

B. T-Terms Collection Phase 

1) Trajectory simplification 

Raw trajectory data normally contains a lot of noises, 

which leads to some unexpected result when we attempt to 
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extract feature points such as falling into local-minimum or 

local-maximum. There are many existing methods to simplify 

trajectory data based on traditional techniques to approximate 

polygonal curves with minimum number of line segments or 

minimum error such as (min-# algorithm) [13], or 

Douglas-Peucker algorithm (DP) [14].  

The min-# algorithm can produce a good result and also 

can simplify curves without loss too much data. However its 

computation cost is up to 



O(N 2)which is quite hard to apply 

in real-life applications. Therefore we use Douglas-Peucker 

algorithm to simplify trajectories. The main idea of 

Douglas-Peucker is, given a polyline specified by a sequence 

of N points 



p1,p2,.., pN   and a distance threshold 



 , we 

can derive a new polyline with fewer points without deviating 

from the original polyline by at most 



 . Douglas-Peucker 

algorithm initially constructs the line segment 



p1p , then 

identifies the point 



pi , the farthest point from the line. If this 

point perpendicular distance to the line is within 



 , then the 

algorihm returns 



p1pN  and terminates. Otherwise, the line is 

splitter at 



pi  and the algorithm is recursively applied to the 

sub polylines  



p1, p2,.., pi  and 



pi,pi1,..,pN .  

To get the most significant 



  value, the value of 



  is 

changed as 2%, 5%, 10%,  20% value of the overall distance 

of the trajectory. From this experiment we found that 5% of 

the overall trajectory length can keep the most significant 

points of the original data.  
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

L2(pi1,pi)is Euclide distance between two points 



pi1 

and 



pi . Result of Douglas-Peucker is shown in Fig. 4. From 

this figure, it is easily seen that Douglas-Peucker algorithm is 

very effective in reducing noise. Douglas-Peucker is able to 

reduce up to over 70% points which are considered as noises. 

 

 
Fig. 4. Douglas-Peucker algorithm result sample. 

2) Feature point representation 

After pre-processing trajectory data with Douglas-Peucker 

algorithm, the remaining points are considered as “feature 

points”. For each point, a sub-trajectory of three contiguous 

points around itself is obtained, as shown in Fig. 5. We want 

each features not to depend on spatial position, so that we 

normalize this trajectory to its root which means that we 

ignore time information from the original data. Therefore, 

given a feature point 



xi,yi , we will get the feature matrix 

of this point as below 



0 xi  xi1

0 yi  yi1

xi1  xi1

yi1  yi1









 

 

The above matrix is hard to collect and do clustering to 

segment, so we transform this matrix into a vector form 



0,xi  xi1,xi1  xi1,0,yi  yi1,yi1  yi1  

Our research focuses on clustering trajectory by its spatial 

characteristic. Ignoring time t parameter does not affect 

clustering result. The original trajectory data is represented as 

6*n matrix as below (n is number of feature points) 

 



0 x2  x1 x3  x1 0 y2  y1 y3  y1

0 x3  x2 x4  x2 0 y3  y2 y4  y2

... ... ... ... ... ...

0 xn  xn1 xn1  xn1 0 yn  yn1 yn1  yn1



















 

 
Fig. 5. Feature point representation. 

3) Trajectory clustering 

There are many existing clustering methods, among which, 

the most famous one is K-means. The K-means algorithm 

purpose is to minimize a criterion of the form 



d(xi, pc(i))
i

 which 



d(xi,pc(i)) is normally the Euclidean 

distance or in some case the Mahalanobis distance between 

data-point 



x i  and the cluster to which it belongs 



pc( i) . 

K-means algorithm gives you a result where sub-trajectories 

similar in distance, are grouped into the same cluster. As this 

is not expected, we construct each group to contain 

sub-trajectories which have similar pattern of moving.One of 

famous extension of K-means algorithm is SKmeans 

algorithm (Spherical K-means) [15]. SKmeans algorithm uses 

cosine similarity. Using cosine similarity means that we are 

able to cluster sub-trajectories which have similar shape. 

Therefore, the proposed method employed SKmeans as 

sub-trajectories clustering algorithm.  

The standard SKmeans problem is to minimize 



(1 cos(xi, pc( i)))
i

 . Given N rows matrix trajectory, and K 

fixed number of centroids, the SKmeans algorithm is 

described in Algorithm 1. We set the stopping criteria as no 

more cluster assignments change. To fix number K of cluster, 

we focus on the variation of a sub-trajectory. Each of feature 

vector constructed from 2 vectors connect 3 contiguous points. 
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Therefore, there are 2 points which are able to vary in 4 main 

directions (west, north, south, east). Therefore, we will have 

up to 4×4=16 degree of freedom. Accordingly, we chose 

K=16 as number of centroids to cluster. 

After clustering similar sub-trajectories into groups, we 

name each group 



W1,W2,...,W16
as T-Terms. A 

representative feature of each group is a concept vector 

obtained in SKmeans algorithm. We then store obtained 

concept vectors representing groups into database (T-Terms 

database) to use in the classification phase. Those concept 

vectors are periodically recalculated to update with newest 

data. 

Algorithm 1. Skmeans with trajectory data. 

Data: Trajectory matrix 

Result: Cluster vectors, and vector assignment      

    information (which cluster the vector belong) 

1. Initialize clustering. Start with some initial partitioning of 

the vector, namely 



 j

(0) 
j1

N . Let 



c j
(0) 

j1

N be the concept 

vectors of the associated partitioning. Set iteration count t 

2. 



t 0  
3. while Stopping criterion is not met do 

4.  for Each row 



pi  of trajectory matrix do 

5.    Compute 



pi
T *cl

(t )
 for all 



l 1,2,...,K ; 

6.    From all 



pi
T *cl

(t )
 computed above, find j =    

  argmax(



pi
T *cl

(t )
) (break ties arbitrary if 



x i has  

  largest cosine similarity with more than one    

  concept vector); 

7.    Induce new partitioning           

  



 j

(t1)  pi : j  argmax( pi
T *cl

(t )) ,1 j K  

8.    Update concept vectors:  



s j  x i
xi  j

 ,      

  



c j
(t1) 

s j

|| s j ||
,1 j K  

9.   end 

10.  



t t 1 
11. end 

C. T-Docs Classification Phase 

Using T-Terms, we are able to construct each original 

trajectory data into a sequence of T-term 



(Wi) , called T-Doc 

To classify T-Docs data, we carried out an DBScan type 

clustering algorithm with LCS (Longest common 

subsequence) as distance function. We need to redefine 

original “Reachable” definition as in Definition 1. 

Definition 1. two T-Docs 



L1 and 



L2 is density reachable 

if LCS distance between 



L1 and 



L2 is greater than 



min(length(L1),length(L2))

2
 

We proposed an algorithm which employ original idea 

from DB-Scan algorithm. Our proposed algorithm main idea 

is that, given a T-Doc as a seed, we then find all around 

T-Docs which are reachable from the seed, then assign those 

T-Docs to the cluster which is initialized by the seed. The 

algorithm is highlighted at Algorithm 2. 

IV. EVALUATION 

We conducted some experiments to evaluate our method 

with an artificial trajectory test data set.  We used WACOM 

BAMBOO Pen table to generate by drawing three types of 

main patterns: triangle, rectangle and wave. This trajectory 

data set contains the similar characteristics as real-life 

trajectories which contain noises and variations of 

sub-trajectories. We asked a group of 10 people to draw  

Algorithm 2. Clustering T-doc algorithm. 

Data: T-docs data 

Result: Cluster of T-dcs 

1. for Each unvisited T-doc T do 

2.  if T not belongs to any cluster then 

3.    init cluster 



CT  with T; 

4.    



Seed T ; 

5.    



type _of (CT ) type _of (Seed); 

6.    for Each unvisited T-Doc T’ except Seed do 

7.     if Reachable(T’, Seed) then 

8.      add T’ to 



CT  

9.     end 

10.    end 

11.   else 

12.    Next; 

13.   end 

14. end 

Those three patterns with both right hand and left hand. 

Then, the test dataset are composed of 60 trajectories. Fig.6 

shows some examples of our test data set. 

 

 
Fig. 6. Sample input data. 

 

We applied our proposed method to classify this set of 

trajectories into groups that represent different patterns of 

trajectories. Fig. 8, Fig. 9 and Fig. 10 shows three examples of 

obtained clusters. The red bold line curve shows 

representative of three clusters each of which corresponds to 

one T-term. Although there were some minor noises but it can 

be clearly seen that each T-Term represents a similar pattern 

of sub-trajectories. Using T-Term databases, we can build a 

T-Doc from original trajectories. For example, a wave pattern 

input data shown in Fig. 6(b) was represented in T-Doc form 

as 



W16,W16,W13,W3,W2,W4,W16,W15,W8,W3,W7
 as 

shown in Fig. 7. 

We carried out an classification algorithm with Algorithm 

2 and obtained the result of 7 clusters. Two clusters represent 

the triangle pattern, two clusters represent the rectangle 

pattern, and three clusters represent the wave pattern. A 

T-Doc can be correctly clustered as far as it is similar to one of 

these three patterns by our method. To evaluate, we calculate 

the average precision as bellow: 
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Fig. 7. Textual Approximation of wave pattern. 

 
Fig. 8. Sub-trajactories cluster result 1. 

 
Fig. 9. Sub-trajactories cluster result 2. 

 
Fig. 10. Sub-trajactories cluster result 3. 

 

_
100%

_

correct set
precision

total set
   

correct_set is the number of correct clustered T-Docs, and 

total_set is the number of total data set. The result is accurate 

with overall 84% precision. We intend to do more detailed 

evaluation, by comparing our method with other existing 

methods. 

V. CONCLUSION 

In this paper, we propose a new generic textual 

approximation method for moving object trajectories. Our 

method is accurate from our preliminary experiment. 

Remaining issues include: (1) application development based 

on our method to show its effectiveness in real-life data 

comparing with existing methods and (2) derivation of some 

constraints in it. 

ACKNOWLEDGMENT 

This work is partially supported by KAKENHI 

\#24300039 and also by MEXT-Supported Program for the 

Strategic Research Foundation at Private Universities, 

2013-2017.F. 

REFERENCES 

[1] Y. Zhang et al., “Discovering tactics in broadcast sports video with 

trajectories,” in Proc. ICIMCS ’09, New York, USA, 2009, pp. 

170–173. 

[2] A. A. Maruf et al., “Time series classification method based on longest 

common subsequence and textual approximation,” in Proc. ICDIM, 

2012, pp. 130–137. 

[3] B. K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of 

similar time sequences under time warping,” in Proc. the Fourteenth 

International Conference on Data Engineering, Washington D.C., 

USA, 1998, pp. 201–208. 

[4] C. Lei et al., “Robust and fast similarity search for moving object 

trajectories,” in Proc. SIGMOD ’05, New York, USA, 2005, pp. 

491–502. 

[5] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity 

search in sequence databases,” in Proc. the 4th International 

Conference on Foundations of Data Organization and Algorithms, 

London, UK, 1993, pp. 69–84.  

[6] P. Laube, M. V. Kreveld, and S. Imfeld, “Finding remo detecting 

relative motion patterns in geospatial lifelines,” presented at 11th Int. 

Symp. on Spatial Data Handling, 2004. 

[7] J. G. Lee et al., “Trajectory clustering: a partition-and-group frame- 

work,” in Proc. SIGMOD ’07, New York, USA, 2007, pp. 593–604. 

[8] G. Joachim et al., “Of motifs and goals: mining trajectory data,” in 

Proc. SIGSPATIAL ’12, New York, USA, 2012, pp. 129–138. 

[9] M. V. Kreveld and J. Luo, “The definition and computation of 

trajectory and subtrajectory similarity,” in Proc. the 15th Annual ACM 

International Symposium on Advances in Geographic Information 

Systems, New York, USA, 2007, pp. 44:1–44:4. 

[10] K. Buchin, M. Buchin, M. V. Kreveld, and J. Luo, “Finding long and 

similar parts of trajectories,” in Proc. the 17th ACM SIGSPATIAL 

International Conference on Advances in Geographic Information 

Systems, New York, USA, 2009, pp. 296–305. 

[11] Z. B. Chen, H. T. Shen, X. F. Zhou, Y. Zheng, and X. Xie, “Searching 

trajectories by locations: an efficiency study,” in Proc. the 2010 ACM 

SIGMOD International Conference on Management of Data, New 

York, USA, 2010, pp. 255–266. 

[12] M. Ester, H. P. Kriegel, S. Jrg, and X. W. Xu, “A density- based 

algorithm for discovering clusters in large spatial databases with 

noise,” in Proc. KDD 1996, Portland, USA,1996, pp. 226–231.  

[13] D. Z. Chen et al., “Space-efficient algorithms for approximating 

polygonal curves in two dimensional space,” in Proc. COCOON ’98, 

London, UK, 1998, pp. 45– 54.  

[14] D. D. H. Peucker, “Algorithms for the reduction of the number of 

points required to represent a digitized line or its caricature,” The 

Canadian Cartographer, vol. 10, no. 2, pp. 112–122, 1973.  

[15] I. Dhillon and D. Modha. Concept Decompositions for Large Sparse 

Text Data Using Clustering, 2001.  

Huy Xuan Do was born in HaNoi, Viet Nam, on 

September 1st, 1988. He is a second year master 

student at Ritsumeikan University now. He received 

BSc. in computer science from Ritsumeikan 

University in 2011. His research interests are time 

series data mining algorithm, text mining algorithm.  

 

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

25



  

Hung-Hsuan Huang received BSc. in computer 

science from National Chen-Chi University, Taiwan in 

1998 and MSc. from National Taiwan University, 

Taiwan. He received his PhD from the Kyoto 

University in 2009. Currently he is a professor at the 

Ritsumeikan University, Japan. He has research 

interest in embodied conversational agent and virtual 

3D space. He is a member of JSAI, IPSJ, TAAI, HIS, 

ACM and IEICE. 

 

Kyoji Kawagoe received B.Eng. and M.Eng in 

electronic engineering from Osaka University in 1975 

and 1977, respectively. He also received Ph.D from 

Tsukuba University in 1992. He joined Ritsumeikan 

University in 1997, while he had worked for NEC 

Corporation since 1977. He is currently a full professor 

of Collage of Information Science and Engineering, 

Ritsumeikan University. His research interests include 

multimedia data engineering, ubiquitous computing and network related 

software research and development. He is a member of IEEE, ACM, ACM 

SIGMOD, Database Society of Japan, IEICE, and IPSJ. 

 

 

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

26


