
 

Abstract—Authentication is a significant issue in system 

control in computer based communication. Human face 

recognition is an important branch of biometric verification 

and has been widely used in many applications, such as video 

monitor system, human-computer interaction, and door 

control system and network security. This paper describes a 

method for Student’s Attendance System which will integrate 

with the face recognition technology using Personal 

Component Analysis (PCA) algorithm. The system will record 

the attendance of the students in class room environment 

automatically and it will provide the facilities to the faculty to 

access the information of the students easily by maintaining a 

log for clock-in and clock-out time. 

 
Index Terms—Face recognition system, automatic 

attendance, authentication, bio-metric, PCA. 

 

I. INTRODUCTION 

Face recognition is as old as computer vision, both 

because of the practical importance of the topic and 

theoretical interest from cognitive scientists. Despite the fact 

that other methods of identification (such as fingerprints, or 

iris scans) can be more accurate, face recognition has always 

remains a major focus of research because of its non-

invasive nature and because it is people's primary method of 

person identification. Face recognition technology is 

gradually evolving to a universal biometric solution since it 

requires virtually zero effort from the user end while 

compared with other biometric options. Biometric face 

recognition is basically used in three main domains: time 

attendance systems and employee management; visitor 

management systems; and last but not the least authorization 

systems and access control systems. 

Traditionally, student’s attendances are taken manually by 

using attendance sheet given by the faculty members in class, 

which is a time consuming event. Moreover, it is very 

difficult to verify one by one student in a large classroom 

environment with distributed branches whether the 

authenticated students are actually responding or not. 

The present authors demonstrate in this paper how face 

recognition can be used for an effective attendance system 

to automatically record the presence of an enrolled 

individual within the respective venue. Proposed system 

also maintains a log file to keep records of the entry of every 

individual with respect to a universal system time.  

 
Manuscript received March 8, 2012; revised May 14, 2012. 

The authors are with the Computer Science and Engineering Department, 
National Institute of Technology, Agartala, India (e-mail: 

nirmalya.kar@gmail.com, mkdb06@gmail.com, ashim.nita@gmail.com, 

dwijen.rudrapal@gmail.com). 

A. Background and Related Work 

The first attempts to use face recognition began in the 

1960’s with a semi-automated system. Marks were made on 

photographs to locate the major features; it used features 

such as eyes, ears, noses, and mouths. Then distances and 

ratios were computed from these marks to a common 

reference point and compared to reference data. In the early 

1970’s Goldstein, Harmon and Lesk [2] created a system of 

21 subjective markers such as hair colour and lip thickness. 

This proved even harder to automate due to the subjective 

nature of many of the measurements still made completely 

by hand.  

Fisher and Elschlagerb [3] approaches to measure 

different pieces of the face and mapped them all onto a 

global template, which was found that these features do not 

contain enough unique data to represent an adult face. 

Another approach is the Connectionist approach [4], 

which seeks to classify the human face using a combination 

of both range of gestures and a set of identifying markers. 

This is usually implemented using 2-dimensional pattern 

recognition and neural net principles. Most of the time this 

approach requires a huge number of training faces to 

achieve decent accuracy; for that reason it has yet to be 

implemented on a large scale. 

The first fully automated system [5] to be developed 

utilized very general pattern recognition. It compared faces 

to a generic face model of expected features and created a 

series of patters for an image relative to this model. This 

approach is mainly statistical and relies on histograms and 

the gray scale value. 

 

II. SYSTEM OVERVIEW 

The present authors used the eigenface approach for face 

recognition which was introduced by Kirby and Sirovich in 

1988 at Brown University. The method works by analyzing 

face images and computing eigenface [8] which are faces 

composed of eigenvectors. The comparison of eigenface is 

used to identify the presence of a face and its identity. There 

is a five step process involved with the system developed by 

Turk and Pentland [1]. First, the system needs to be 

initialized by feeding it a set of training images of faces. 

This is used to define the face space which is set of images 

that are face like. Next, when a face is encountered it 

calculates an eigenface for it. By comparing it with known 

faces and using some statistical analysis it can be 

determined whether the image presented is a face at all. 

Then, if an image is determined to be a face the system will 

determine whether it knows the identity of it or not. The 

optional final step is that if an unknown face is seen 

repeatedly, the system can learn to recognize it. 

Study of Implementing Automated Attendance System 

Using Face Recognition Technique 

Nirmalya Kar, Mrinal Kanti Debbarma, Ashim Saha, and Dwijen Rudra Pal 

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

100



 
 

Fig. 1. Architecture of the system 
 

The two main components used in the implementation 

approach are open source computer vision library (OpenCV) 

and Light Tool Kit (FLTK).  One of OpenCV’s goals is to 

provide a simple-to-use computer vision infrastructure that 

helps people build fairly sophisticated vision applications 

quickly. OpenCV library contains over 500 functions that 

span many areas in vision.  The primary technology behind 

Face recognition is OpenCV; the interface is designed using 

FLTK. The user stands in front of the camera keeping a 

minimum distance of 50cm and his image is taken as an 

input. The frontal face is extracted from the image then 

converted to gray scale and stored. The Principal component 

Analysis (PCA) algorithm [7] is performed on the images 

and the eigen values are stored in an   xml file. When a user 

requests for recognition the frontal face is extracted from the 

captured video frame through the camera. The eigen value is 

re-calculated for the test face and it is matched with the 

stored data    for the closest neighbour. 

A. PCA (Principal Component Analysis) 

PCA method has been widely used in applications such as 

face recognition and image compression. PCA is a common 

technique for finding patterns in data, and expressing the 

data as eigenvector to highlight the similarities and 

differences between different data [6]. The following steps 

summarize the PCA process. 

1. Let {D1,D2,…DM} be the training data set. The average 

Avg is defined by: 

1

1

M
Avg Di

M i

  

2. Each element in the training data set differs from Avg by 

the vector Yi=Di-Avg. The covariance matrix Cov is 

obtained as:  

                                                           

1
.

1

T
M

Cov Yi Yi
M i


  

3. Choose M’ significant eigenvectors of Cov as EK’s, and 

compute the weight vectors Wik for each element in the 

training data set, where k varies from 1 to M’.  

.( ), ,
T

ik k i
W E D Avg i k  

 

III. SYSTEM IMPLEMENTATION 

The proposed system has been implemented with the help 

of three basic steps: A. detect and extract face image and 

save the face information in an xml file for future references. 

B.  Learn and train the face image and calculate eigen value 

and eigen vector of that image. C. Recognise and match face 

images with existing face images information stored in xml 

file [1].   

 

 
Fig. 2. 

 

A. Face Detection and Extract 

At first, openCAM_CB() is called to open the camera for 

image capture. Next the frontal face [2] is extracted from the 

video frame by calling the function ExtractFace(). The 

ExtractFace() function uses the OpenCv HaarCascade 

method to load the haarcascade_ frontalface_alt_tree.xml as 

the classifier. The classifier outputs a "1" if the region is 

likely to show the object (i.e., face), and "0" otherwise. To 

search for the object in the whole image one can move the 

search window across the image and check every location 

using the classifier. The classifier is designed such a manner 

that it can be easily "resized" in order to be able to find the 

objects of interest at different sizes, which is more efficient 

than resizing the image itself. So, to find an object of an 

unknown size in the image the scan procedure is done 

several times at different scales. After the face is detected it 

is clipped into a gray scale image of 50x50 pixels.  

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

101



B. Learn and Train Face Images 

Learn() function which performs the PCA algorithm on 

the training set. The learn() function implementation is done 

in four steps: 

 

1. Load the training data. 

2. Do PCA on it to find a subspace. 

3. Project the training faces onto the PCA subspace. 

4. Save all the training information. 

         a. Eigenvalues 

         b. Eigenvectors 

         c. The average training face image 

         d. Projected face image 

         e. Person ID numbers 

 

The PCA subspace is calculated by calling the built-in 

OpenCV function for doing PCA, cvCalcEigen Objects(). 

The remainder of doPCA() creates the output variables that 

will hold the PCA results when cvCalcEigenObjects() 

returns [5].  

To do PCA, the dataset must first be "centered." For our 

face images, this means finding the average image - an 

image in which each pixel contains the average value for 

that pixel across all face images in the training set. The 

dataset is centred by subtracting the average face's pixel 

values from each training image. It happens inside 

cvCalcEigenObjects(). 

But we need to hold onto the average image, as it will be 

needed later to project the data for that purpose it is needed  

to allocate memory for the average image and the image is a 

floating-point image. Now we have found a subspace using 

PCA, we can convert the training images to points in this 

subspace. This step is called "projecting" the training image. 

The OpenCV function for this step is called 

cvEigenDecomposite(). Then all the data for the learned 

face representation is saved as an XML file using OpenCV's 

built-in persistence functions. 

C. Recognise and Identification 

Recognize() function, which implements the recognition 

phase of the Eigenface program [5]. It has just three steps. 

Two of them - loading the face images and projecting them 

onto the subspace - are already familiar. The call to 

loadFaceImgArray() loads the face images, listed in the 

train.txt, into the faceImgArr and stores the ground truth for 

person ID number in personNumTruthMat. Here, the 

number of face images is stored in the local variable, n 

TestFaces. 

We also need to load the global variable n TrainFaces as 

well as most of the other training data - nEigens, 

EigenVectArr, pAvgTrainImg, and so on. The 

functionloadTrainingData() does that for us. OpenCV 

locates and loads each data value in the XML file by name. 

After all the data are loaded, the final step in the 

recognition phase is to project each test image onto the PCA 

subspace and locate the closest projected training image. 

The call to cvEigenDecomposite(), projects the test image, 

is similar to the face-projection code in the learn() function. 

As before, we pass it the number of eigen values 

(nEigens), and the array of eigenvectors (eigenVectArr). 

This time, however, we pass a test image, instead of a 

training image, as the first parameter. The output from 

cvEigenDecomposite() is stored in a local variable - 

projectedTestFace. Because there's no need to store the 

projected test image, we used a C array for 

projectedTestFace, rather than an OpenCV matrix. 

The findNearestNeighbor() function computes distance 

from the projected test image to each projected training 

example. The distance basis here is "Squared Euclidean 

Distance." To calculate Euclidean distance between two 

points, we need to add up the squared distance in each 

dimension, and then take the square root of that sum. Here, 

we take the sum, but skip the square root step. The final 

result is the same, because the neighbour with the smallest 

distance also has the smallest squared distance, so we can 

save some computation time by comparing squared values. 

 

IV. EXPERIMENT AND RESULT 

The step of the experiments process are given below:  

 

1. Face Detection: 

  

Start capturing images through web camera of the client side: 

 

Begin: 

 

   //Pre-process the captured image and extract face image  

 

   //calculate the eigen value of the    captured face image 

and compared with eigen values of existing faces in the 

database. 

 

   //If eigen value does not matched with existing ones, save 

the new face image information to the face database (xml 

file). 

 

  //If eigen value matched with existing one then recognition 

step will done. 

 

End; 

 

2. Face Recognition: 

 

Using PCA algorithm the following steps would be followed 

in for face recognition: 

 

Begin: 

 

   // Find the face information of matched face image in from 

the database. 

  

   // update the log table with corresponding face image and 

system time that makes completion of attendance for an 

individual students. 

 

end; 

 

This section presents the results of the experiments 

conducted to capture the face into a grey scale image of 

50x50 pixels. 

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

102



TABLE 1: DESCRIBES THE OPENCV FUNCTION USED IN THE PROPOSED 

SYSTEM AND ITS EXECUTION RESULTS. 
 

Test data Expected Result Observed 

Result 

Pass/ 

Fail 

OpenCAM_CB() Connects with the 
installed camera and 

starts playing. 

Camera 
started. 

pass 

LoadHaar 

Classifier() 

Loads the 

HaarClassifier Cascade 
files for frontal face 

Gets ready for 

Extraction. 

Pass 

ExtractFace() Initiates the Paul-Viola 

Face extracting Frame 
work. 

Face extracted Pass 

Learn() Start the PCA 

Algorithm  

Updates the 

facedata. xml 
Pass 

Recognize() It compares the input 
face with the saved 

faces. 

Nearest face Pass 

 

      

      

     

Fig. 3. Training Images 

 
TABLE 2: FACE DETECTION AND RECOGNITION RATE 

 

Face Orientations Detection Rate  
 

Recognition Rate 

O0  (Frontal face) 98.7 %  95% 

18º 80.0 %  78% 

54º 59.2 %  58% 

72º 0.00 %  0.00% 

90º (Profile face) 0.00 %  0.00% 

 

We performed a set of experiments to demonstrate the 

efficiency of the proposed method. 30 different images of 10 

persons are used in training set. Figure 3 shows a sample 

binary image detected by the ExtractFace() function using 

Paul-Viola Face extracting Frame work detection method. 

From table 2 it is been observed that with the increasing of 

face angle with respect to camera face detection and 

recognition rate is become decreases.  

 

V. CONCLUSION AND FUTURE WORK 

In order to obtain the attendance of individuals and to 

record their time of entry and exit, the authors proposed the 

attendance management system based on face recognition 

technology in the institutions/organizations. The system 

takes attendance of each student by continuous observation 

at the entry and exit points. The result of our preliminary 

experiment shows improved performance in the estimation 

of the attendance compared to the traditional black and 

white attendance systems. Current work is focused on the 

face detection algorithms from images or video frames. 

In further work, authors intend to improve face 

recognition effectiveness by using the interaction among our 

system, the users and the administrators. On the other hand, 

our system can be used in a completely new dimension of 

face recognition application, mobile based face recognition, 

which can be an aid for common people to know about any 

person being photographed by cell phone camera including 

proper authorization for accessing a centralized database. 

 

  

   

       

 
 

     

           

    
 

      

 

   

  

 
 

 

 

 
 

 

 

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

103

REFERENCES

[1] M. A. Turk and A. P. Pentland, “Face Recognition Using Eigenfaces,”

in Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 586–591. 1991.

[2] A. J. Goldstein, L. D. Harmon, and A. B. Lesk, “Identification of 

Human Faces,” in Proc. IEEE Conference on Computer Vision and 

Pattern Recognition, vol. 59, pp 748 – 760, May 1971

[3] M. A. Fischler and R. A. Elschlager, “The Representation and 

Matching of Pictorial Structures,” IEEE Transaction on Computer, 

vol. C-22, pp. 67-92, 1973.

[4] S. S. R. Abibi, “Simulating evolution: connectionist metaphors for 

studying human cognitive behaviour,” in Proceedings TENCON 2000,

vol. 1 pp 167-173, 2000.

[5] Y. Cui, J. S. Jin, S. Luo, M. Park, and S. S. L. Au, “Automated

Pattern Recognition and Defect Inspection System,” in proc. 5th

International Conference on Computer Vision and Graphical Image,

vol. 59, pp. 768 – 773, May 1992

[6] Y. Zhang and C. Liu, “Face recognition using kemel principal 

component analysis and genetic algorithms,” IEEE Workshop on 

Neural Networks for Signal Processing, pp. 4-6 Sept. 2002.

[7] J. Zhu and Y. L. Yu, “Face Recognition with Eigenfaces,” IEEE 

International Conference on Industrial Technology, pp. 434 -438, 

Dec. 1994. 

[8] M. H. Yang, N. Ahuja, and D. Kriegmao, “Face recognition using 

kernel eigenfaces,” IEEE International Conference on Image 

Processing, vol. 1, pp. 10-13, Sept. 2000.

[9] T. D. Russ, M. W. Koch, and C. Q. Little, “3D Facial Recognition: A 

Quantitative Analysis,” 38th Annual 2004 International Carnahan 

Conference on Security Technology, 2004.

[10] P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell, “Face Recognition 

by Humans: Nineteen Results All Computer Vision Researchers 

Should Know About,” in Proceedings of the IEEE, vol. 94, Issue 11, 

2006.

[11] Y.-W. Kao, H.-Z. Gu, and S.-M. Yuan “Personal based authentication 

by face recognition,” in proc. Fourth International Conference on 

Networked Computing and Advanced Information Management, pp 

81-85, 2008.

[12] A. T. Acharya and A. Ray, Image Processing: Principles and 

Applications, New York: Wiley, 2005.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Goldstein,%20A.J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1672195&queryText%3Delschlager%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1672195&queryText%3Delschlager%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1672195&queryText%3Delschlager%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=893563&queryText%3DConnectionist%26openedRefinements%3D*%26filter%3DAND%28AND%28NOT%284283010803%29%29%2CAND%28NOT%284283010803%29%29%29%26ranges%3D1985_2005_Publication_Year%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=893563&queryText%3DConnectionist%26openedRefinements%3D*%26filter%3DAND%28AND%28NOT%284283010803%29%29%2CAND%28NOT%284283010803%29%29%29%26ranges%3D1985_2005_Publication_Year%26searchField%3DSearch+All

