

Abstract—Cloud computing has become the norm of today’s

heavily used computer science applications. Load balancing is

the key to efficient cloud based deployment architectures. It is

an essential component in the deployment architecture when it

comes to cloud native attributes of multi-tenancy, elasticity,

distributed and dynamic wiring, and incremental deployment

and testability. A load balancer that can base its traffic routing

decisions on multiple cloud services is called a service-aware

load balancer. We are introducing a novel implementation of a

flexible load balancing framework which can be customized

using a domain specific scripting language. Using this approach

the user can customize the framework to take into account the

different services running on each cluster (service-awareness) as

well as the dynamically changing tenants in each cluster

(tenant-awareness) before making the load balancing decisions.

This scripting language lets users to define rules and configure

message routing decisions. This methodology is more light

weight and expressive than products already available, making

the cluster based load balancing more efficient and productive..

Index Terms—Load balancing, tenant-awareness, cloud

computing, customizable framework.

I. INTRODUCTION

Computer networks have grown from small scale intranets

that spread across a single room to worldwide networks that

interconnect every region around the globe. The Internet can

surely be identified as the largest network, which is composed

of other networks such as corporate networks, campus

networks, factory networks and home networks around the

world.

With the emergence of internet based services such as the

World Wide Web and Electronic Mail, the information flow

between two nodes in a network has increased vastly over the

last decade. Because of this, network congestion has become

a major problem. And because some nodes receive higher

number of requests than others in a network, those nodes are

overloaded and the overall performance of the network

degrades. It is unacceptable for a network to go down or

exhibit poor performance as it can literally shut down a

business in a networked economy. The main logic behind load

balancing servers and networks is to even out the network

information flow among nodes to boost performance and

reduce network congestion.

As the Internet and the intranets that it is composed of have

become the operational backbone of businesses, two types of

equipment can be identified as the business IT infrastructure.

Manuscript received March 17, 2013; revised May 22, 2013.

Y. Pandithawattha, K. Perera, M. Perera, M. Miniruwan, and M. Walpola

are with Department of Computer Science and Engineering, University of

Moratuwa, Sri Lanka. (e-mail: malakajw@uom.lk).

A. Azeez is with WSO2 Inc, Mountain View, CA, USA. (e-mail:

afkham@gmail.com).

They are computing devices that function as a client and/or a

server, and switches and routers that connect these devices [1].

Load balancers act as a bridge between the servers and the

network. On one hand they must have knowledge of higher

level properties of servers in order to communicate with them

intelligently and on the other hand they must understand

network protocols to integrate with them effectively [1]

Simple input load distribution is not the only functionality that

is expected from a typical load balancer. Server health

monitoring, keeping session persistence, fault tolerance and

changing the load distribution scheme according to various

conditions are some of the many capabilities of today‟s load

balancing products.

A lot of research has been conducted on load balancing

algorithms and on how to achieve the other additional

requirements. The core algorithms can be broadly divided in

to categories such as Client based, DNS based, Dispatcher

based and Server based algorithms [2] Many existing load

balancers can switch between these algorithms dynamically

based on the availability and congestion of nodes (knowledge

from server health monitoring) and the services running on

them (WWW, SMTP etc.).

But today, networks have evolved from simple

interconnected information nodes to complex interconnected

service clusters. Users in a network have become service

consumers rather than simple information requesters. In this

environment, the demands for new services as well as existing

services increase in an exponential rate. To serve this growing

demand, the IT infrastructure of corporate service providers

must take advantage of new approaches like Web Services,

Service Oriented Architecture [3] and Software as a Service

(SaaS) [4].

Because of this, load balancers must take into account these

factors in order to provide better functionality. They must

have knowledge of high level services (here, high level

services means application level services such as order

processing services, credit transaction services etc.) a cluster

of servers provide as opposed to the low level services

individual servers provide. This knowledge is then used to

make intelligent load balancing decisions.

The term “Cloud Computing” refers to the technology that

allows consumers to use applications and services without

having to install them or deploy them and access their

personalized data and services from anywhere in the world

with the internet access. One such example is Google,

providing Web search engine services, emailing, document

sharing, application sharing and many other facilities.

According to Rosenberg and Mateos [5], the five main

principles behind cloud computing are:

 Pooled computing resources available to any subscribing

users.

 Virtualized computing resources to maximize hardware

Gajaba: Dynamic Rule Based Load Balancing Framework

Y. Pandithawattha, K. Perera, M. Perera, M. Miniruwan, M. Walpola, and A. Azeez

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

608DOI: 10.7763/IJCCE.2013.V2.259

utilization.

 Elastic scaling up or down according to need.

 Automatic creation of new virtual machines or deletion

of existing ones.

 Resource usage billed only as used.

The key to cloud based deployment architectures is load

balancing. It is an essential component in the deployment

architecture when it comes to Cloud native attributes of

multi-tenancy, elasticity, distributed and dynamic wiring, and

incremental deployment and testability. In cloud deployments,

a cluster of nodes that performs a single collaborative service

is called a “Cloud service”. A load balancer that can base its

traffic routing decisions on multiple cloud services is called a

service-aware load balancer. The most important difference

between a typical load balancer and a service-aware load

balancer is that a service-aware load balancer can route traffic

to the correct cluster and balance the load according to the

algorithm specified by each cluster.

II. EXISTING LOAD BALANCING SYSTEMS

Load balancing systems can be divided into two main

categories: Network and server load balancers and Content

based load balancers. But today, the margin between these

two types is blurred and almost every existing system can be

identified as both network/server and content based load

balancer. Existing load balancing products such as Citrix

NetScaler [6], F5 BIG-IP Load Traffic Manager [7],

CoyotePoint Equalizer [8] and A10 Networks AX Series [9]

were studied to identify common functionality. Some of the

most common features of load balancing systems are listed

and explained below.

A. Layer 4-7 Switching

Load balancers today has the ability to inspect message

header information of not just Layer 2 or 3 in the OSI

reference stack, but also Layer 4 to 7 header information.

Their load balancing algorithms take this information into

account and this enables them to make intelligent routing

decisions based on application level information in the

servers. This can vastly increase the overall system

performance, security, availability and scalability. This

functionality is provided by many existing systems, such as

Citrix NetScaler, CoyotePoint Equalizer E250GX and F5

BIG-IP Load Traffic Manager.

Compared to the above products, A10 Networks AX Series

of load balancers provide a unique feature called aFlex

technology [10]. Although AX products support almost all the

Layer 4-7 protocol based switching, aFlex tool allows users to

write their own scripts using the TCL scripting language to

inspect packets and traffic manipulation. This gives much

flexibility as the user is given the ability to define the

application awareness to address any type of application.

B. Session Affinity (Persistence)

This is the ability to identify packets from a client within

the boundary of a session, and route them to the same node

until the session is closed. One way to ensure session affinity

is by routing packets to the same server based on the client‟s

IP address. But this alone will not solve the problem as IP

addresses are shared by many clients in environments with

proxy servers. Some other schemes to achieve this are cookie

based policies, server based policies, group based policies

and JSESSIONID based policies. All the products used in this

study provided mechanisms to assure session affinity.

C. Server Health Monitoring

Load balancers must be aware of the availability and

current working conditions of each server connected to the

network. This is attained by performing health checks on

servers from time to time. Routing decisions are effected

based on the results of these health checks. Some health

monitoring schemes are as simple as pinging the server and

others are more complex schemes such as software agents in

servers monitoring the health and reporting to the load

balancer.

A10 Networks AX Series supports TCL scriptable health

checks. CoyotePoint Equalizer E250GX uses a technology

called Active Content Verification (ACV) [11] which uses a

server side agent to perform health checks and send details to

the load balancer. Other products also use scriptable health

check support.

D. Fault Tolerance

This is to ensure that the load balancer would not become a

single point of failure. Load balancing products today has the

ability to interconnect two or more of them in different

configurations. As one system fails the other/others can take

its place and continue serving the system. All products used in

the study were able to configure to handle fault tolerance.

E. Multi-tenancy

Multi-tenancy is the principle of single instance of software

running on a server, serving multiple clients. This is one of the

core concepts in Cloud Computing, as applications are

designed to virtually partition data and configurations (known

as tenants) to serve multiple clients. Clients can work with a

customized virtual application instance. This improves the

scalability of the system to a great extent.

In this environment, the load balancer must have

knowledge about the individual tenants as well as applications

in order to distribute load efficiently. This is the main scope of

Gajaba framework.

III. LOAD BALANCING WITH GAJABA FRAMEWORK

Gajaba is a software based load balancing framework

written in Java programming language. The main goal of

Gajaba project is to be able to customize the framework easily

to achieve a large variety of load balancing needs. Rather than

implementing every existing load balancing feature, Gajaba

provides an easy to learn scripting language the users can use

to implement their own needs. This is different from existing

load balancing products and how Gajaba achieves this

flexibility is purely based on the frameworks unique

architecture and the domain specific scripting language

A. Abstract Architecture

Gajaba framework can be logically divided into three main

components. They are the server, client and the distributed

data storage. The server component contains the main load

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

609

balancing mechanism and message routing mechanism. It is

the public access point of the overall distributed system. The

client component sits on top of each worker node/server. It

provides third party applications running on each node/server

an interface to communicate with the Gajaba framework.

Shared by all the client components and the server component,

there is a distributed data storage which is used to by clients to

communicate with the server component.

Fig. 1. Abstract Architecture of Gajaba.

Here the third party application can be any process running

on the node. It can be either a cloud application or a web

service. All it needs to do is use the client interface and

publish the data needed by the load balancer to make its

routing decisions. To interpret these data values, the user must

write rules using the Gajaba scripting language. They are

written once and used on the data published dynamically by

the client components to make load balancing decisions. Even

though these rules do not change over time, the behavior of

the load balancer can dynamically change as the data values

published by client components change. Which data are

needed by these rules depends on the applications running and

the nature of rules written by the user. Data items can be

anything as long as they are published as key, value pairs as

the load balancer expects the data in this format.

With this methodology the users can define the data that

their custom application should publish and how to interpret

them to achieve their load balancing requirements, giving

them a greater flexibility. Using this method, users can

implement simple load balancing algorithms such as round

robin to advanced content-aware message routing algorithms,

making Gajaba framework applicable to a wide range of

distributed systems.

B. Rule Engine

The highly customizable nature of Gajaba framework is

achieved by the Rule Engine module. This module is designed

not only to evaluate rules written in Gajaba scripting language,

but also to optimize them for faster execution. The rule

evaluation mechanics are bound to the grammar rules of the

scripting language. The optimization of rule execution is

achieved by converting each rule in to a Java class using

source-to-source compilation and compiling these classes into

Java bytecode using the system‟s Java compiler before

execution. This way, the rules will be executed in the speed of

Java bytecode making use of the optimization techniques

employed by the Java Virtual Machine.

Fig. 2. Gajaba Rule Compilation Process.

C. Gajaba Scripting Language

Gajaba Scripting Language is the domain specific language

(DSL) used by the framework to define rules. A Gajaba rule

written using this language consists of three parts, a left

variable, an operator, and a right variable. All the rules must

be written in this format.

Ex: @ip=#”acceptingIP”

Left variable: @ip

Operator: „=‟

Right variable: #”acceptingIP”

1) Variables

Variables in Gajaba Scripting Language (in both left and

right side) can be either a string constant or a field in the

message request. A string constant is a series of characters

enclosed within single quotes. For instance, in the above

example “acceptingIP” is a string constant. A string constant

in Gajaba Scripting language is exactly similar to a String

literal used in Java language (except for single quotes rather

than double quotes). It can contain any combination of

characters (with the escape character „\‟ for escaping special

characters like quotation marks). Even if these strings are

constants, they can be mapped to other values by using the „#‟

symbol before them. (This will be explained in detail later)

A field in the message request is an identifier that has one

or more alphabetic characters proceeded by an „@‟ symbol.

These variables can directly be mapped to the values of the

incoming message request. For instance, in the above

example “@ip” is mapped to the IP address of the sending

node.

2) Operators

The current version supports the following operators

 „=‟ operator

This is the “equals” operator. It must be specially noted that

this is not an assignment operator as in many programming

languages like C and Java.

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

610

 „#‟ symbol

Even if this symbol is not specified as an operator in Gajaba

Scripting Language grammar, this symbol does a special

operation on the string constant right to it. It will replace the

string constant with a value from the distributed cache that is

mapped with a key similar to the string.

Ex: #“acceptingIP” in the above example will be mapped

to a value in the distributed cache which has a key value

equals to “acceptingIP”.

Key Value

acceptingIP 175.157.251.176

In the distributed cache, this mapping value is

175.157.251.176. Therefore this value will be mapped.

According to this example rule, the message will be routed to

all the clients that have published the above key

“acceptingIP” with a value of their server IP addresses.

 „[]‟ operator

This is the Regex operator. Whichever expression written

within these square brackets, the Rule Engine will try to

evaluate them as a standard regular expression

IV. IMPLEMENTATION

Gajaba framework is divided into several key modules.

These modules are separated based on their functionality and

how each should contribute to the overall framework.

A. Gajaba Rule Module

This module contains the rule engine. It provides two main

functionalities. The first is to translate rules written in Gajaba

Scripting Language into raw Java source code. The second is

to acquire the translated Java code and compile them using the

JVM into bytecode for better performance. The main focus of

this module was to implement the rule engine without making

it a performance bottleneck. Evaluating the rules written in

Gajaba Scripting Language as-is is much slower than making

them more compact and convert them into an optimized

intermediate representation. Therefore the module was

designed to compile the rules into working set of Java classes

(source-to-source compilation) so that the JVM can in turn

compile those classes into Java bytecode. These Java

bytecode bundles are compiled once and used many times so

that the overhead of doing this type of compilation is quite

less, making it a high performance boost.

Gajaba scripting language grammar was defined and its

parser was generated using Antlr3 [12] parser generator.

Using this generated parser, an abstract syntax tree (AST) is

generated for each rule and using this AST the relevant Java

code is generated. The whole scripting language integration is

implemented as a JSR223 [13] compliant scripting module.

B. Gajaba Server Module

This module can be considered as the heart of the

framework. It has two subcomponents, the Proxy which

handles the actual message routing and the Server which

manages other modules such as Group Module and updates

the distributed cache based on the input of the Rule Module.

The Proxy component uses the advanced functionalities such

as “AsynchronousSocketChannels” of NIO2 API [14],

released with Java SE 7.

The main focus was given to make the I/O operations as

fast as possible. Another focus was to make the module

scalable by allowing it to handle many threads without adding

a significant overhead to the operating system. These ideas

led to the use of asynchronous I/O mechanisms as opposed to

synchronous I/O. The way it is handled in Gajaba framework

was by using the new asynchronous channel I/O API defined

in Java 7, known as NIO2 API.

Fig. 3. Gajaba Server Module.

C. Gajaba Group Module

This module handles the group management tasks and

cluster management within the framework. It uses a

peer-to-peer network protocol to communicate and manages

each client in groups specified by the client itself. It also

contains the shared distributed cache implementation where

clients can update to publish key value pairs.

The main focus given for this module was to achieve the

group management functionality with dependencies to a

minimum number of third party libraries. The reason for this

is to make the module light-weight and get better performance

by limiting the communication between sub-component

libraries. Therefore Gajaba Group Module uses Shoal

Clustering Framework [15], the clustering component used in

the Glassfish Project [16]. Shoal uses JXTA [17]

peer-to-peer networking protocol and contains a distributed

data storage shared among the group members.

Fig. 4. Gajaba Group Module.

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

611

This module keeps track of each member joined and sends

out notifications to each other. It can also respond to member

failures and rejoins so the users can take into account this

information when they write rules to respond to these types of

events.

D. Gajaba Agent Module

This module is the agent library that operates within the

client server. It publishes client level information to the load

balancer via the distributed cache.

The main purpose of this module is to sit on each client and

publish key, value pairs describing the clients various details

to the load balancer. The mechanisms and desired

functionality to support this is already implemented in other

modules, mainly in the Group Module. What the Agent

Module really does is that use the functionality via the API

provided with other modules and publishes information to the

system.

It is up to the user to define the services and other contents

running on their server using the Gajaba Scripting Language

and publish them using the Agent‟s publish() method. This

gives the user much flexibility to apply the load balancing to

various types of contents.

E. Gajaba Simulator Module

This module represents the framework in a graphical form.

It consists of a web based system visualizer and a simulator. It

displays each client‟s information, contents of the distributed

cache and message logs. The simulator can be used to pump

dummy messages and observe the framework in action.

This module uses the Jetty HTTP Server [18] to run the

web based visualizer and the data visualization is rendered

using D3 [19] JavaScript library.

The Simulator Module‟s GUI displays the content of the

Distributed Shared Cache in a table format and the server

organization in a tree structure. The main functionality of this

module is that it can pump dummy messages into the system

and the GUI will display the updated context of the system.

Fig. 5. Gajaba Simulator Module.

V. CONCLUSION

This paper introduces a dynamic, rule based load balancing

framework suited for a wide variety of environments

including cloud computing environments. The product can be

easily configured and added to most of the existing systems.

The project uses the latest technologies for implementing

framework. These technologies provide more performance

gain to the framework making it competitive among the

existing load balancers.

Gajaba Scripting Language which is designed to facilitate

to the load balancer, is a simple, yet powerful domain-specific

language. Gajaba Rule Engine provides high performance

rule evaluation which results in an efficient load balancer.

The load balancing decisions are based on variety of

factors. It can collect information from simple server level to

application level, service level and cluster level providing the

capability of working as a simple load balancer to a complex

content-aware load balancer.

Therefore it could be concluded that Gajaba is a

combination of latest load balancing features for efficient

routing in most environments, including Cloud based and

Service Oriented Architectures.

ACKNOWLEDGMENT

The authors of this paper would like to thank Dr. Malaka

Walpola for coordinating this module as well as providing

guidance as the project supervisor. Special thanks go out to

Mr. Afkham Azeez for providing this wonderful idea and for

the immense guidance. The authors would also like to thank

the staff and the support staff members of Department of

Computer Science and Engineering, University of Moratuwa

and all the fellow batch mates for their support.

REFERENCES

[1] C. Kopparapu, Load Balancing Servers, Firewalls, and Caches, Wiley,

Feb. 2002.

[2] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on

web-server systems,” IEEE Internet Computing, vol. 3, pp. 28--39,

June 1999.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and

Design, Upper Saddle River, NJ , USA : Prentice Hall PTR , 2005.

[4] M. Turner, D. Budgen, and P. Brereton, “Turning software into a

service,” Computer, vol. 36, pp. 38- 44, Oct. 2003.

[5] J. Rosenberg and A. Mateos, The Cloud at Your Service, Manning

Publications, Pap/Psc ed., Nov. 2010.

[6]

http://wso2.com.

[7] Apache Axis2 - Apache Axis2/Java - Next Generation Web Services.

[Online]. Available http://axis.apache.org/axis2/java/core

[8] Apache. [Online] Available: http://axis.apache.org/axis2/java/rampart.

[9] Apache Synapse - The Lightweight ESB. [Online]. Available:

http://synapse.apache.org

[10] aFleX Advanced Scripting for Layer 4-7 Deep-Packet Inspection (DPI).

[Online]. Available:

http://www.a10networks.com/products/axseries-aflex_advanced_scri

pting.php

[11] Coyote Point Equalizer E250GX | Application Traffic. [Online]

Available: http://www.coyotepointworks.com/E250GX.asp

[12] ANTLR 3 Wiki Home - ANTLR 3 - ANTLR Project. [Online]

Available:

http://www.antlr.org/wiki/display/ANTLR3/ANTLR+3+Wiki+Home

[13] Scripting for the Java Platform. [Online]. Available:

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripti

ng/

[14] File I/O (Featuring NIO.2) (The Java™ Tutorials > Essential Classes >

Basic I/O. [Online]. Available:

http://docs.oracle.com/javase/tutorial/essential/io/fileio.html

[15] Project Shoal - A Dynamic Java Clustering. [Online]. Available:

http://shoal.java.net/

[16] GlassFish - Open Source Application. [Online]. Available:

http://glassfish.java.net/

[17] JXTA™ - The Language and Platform Independent Protocol for P2P

Networking. [Online]. Available: http://jxta.kenai.com/

[18] Jetty WebServer. [Online]. Available: http://jetty.codehaus.org/jetty/

[19] D3.js - Data-Driven Documents. [Online]. Available: http://d3js.org/

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

612

EnterpriseWSO2 Lean Middleware. [Online] Available at:

Y. Pandithawattha is 25 years old, he is now a

student at the Department of Computer Science and

Engineering, University of Moratuwa, Sri Lanka.

 K. Perera is 25 years old, he is now a student at the

Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.

 M. Perera is 25 years old, he is now a student at the

Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.

M. Miniruwan is 25 years old, he is now a student at the

Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.

M. Walpola is 28 years old, he is now a student at the

Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.

A. Azeez is 25 years old, he is a director, Architecture,

WSO2 Inc, Mountain View, CA, USA.

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

613

