


Abstract—With computers, security is only a matter of

software. The Internet has made computer security much more

difficult than it used to be. In this paper, we introduce modified

AES with S-boxes bank to be acted like rotor mechanism and

dynamic key MDS matrix (SDK-AES). In this paper we try to

make AES key dependent and resist the frequency attack. The

SDK-AES algorithm is compared with AES and gives excellent

results from the viewpoint of the security characteristics and

the statistics of the ciphertext. Also, we apply the randomness

tests to the SDK-AES algorithm and the results shown that the

new design passes all tests which proven its security.

Index Terms—Advanced encryption algorithm (AES),

S-boxes bank, rotor, frequency analysis, inverse power function,

MDS.

I. INTRODUCTION

A. AES

AES is short for Advanced Encryption Standard and is a

United States encryption standard defined in Federal

Information Processing Standard (FIPS) 192, published in

November 2001 [1]. It was approved as a federal standard in

May 2002. AES is the most recent of the four current

algorithms ratified for federal us in the United States.

Rijndael submitted by Joan Daemen and Vincent Rijmen, is a

symmetric key, iterated block cipher based on the arithmetic

in the Galois Field 8(2)GF . AES Input and Output consists of

128 bit sequences. The cipher key is 128, 192, or 256 bits.

Byte is the unit of processing. Input blocks are 16 bytes each.

AES operations are Conducted on a two dimensional array of

bytes called the state. The state consists of four rows of bytes

each containing
bN bytes where

bN is the block length divided

by 32. Rijndael round function acts on a state
rN times, where

rN is equal to the number of rounds that can be 10, 12 or 14

rounds, depending on
kN , where

kN is equal to the number of

32-bit words comprising the Cipher Key [2]. Rijndael round

is consists of 4 transformations:

Sub bytes: Transformation in the Cipher that processes

the State using a nonlinear byte substitution table (S-box) that

operates on each of the State bytes independently which

provides nonlinearity and confusion.

Shift rows: Transformation in the Cipher that processes

the State by cyclically shifting the last three rows of the State

by different offsets to provide inter-column diffusion.

Mix columns: Transformation in the Cipher that takes all

of the columns of the State and mixes their data

(independently of one another) to produce new columns

which provides inter-Byte diffusion.

Add round key: Transformation in the Cipher and Inverse

Cipher in which a RoundKey is added to the State using an

XOR operation which provides confusion.

This paper introduces a new modification on AES

algorithm to exhibit a substantial avalanche effect, to ensure

that no trapdoor is present in the cipher, to make the key

schedule so strong that the knowledge of one round key does

not help in finding the cipher key or other round keys, and to

resist the frequency analysis on ciphertext.

B. The MDS Matrix

Maximum distance separable matrixes (MDS) are widely

used in design of block ciphers and hash functions etc. Based

on the character of its differential branch number, MDS

matrix is widely used and the arithmetic using MDS matrixes

can effective against differential cryptanalysis and linear

cryptanalysis. A linear code over Galois field (2)pGF is

denoted as an (, ,)n k d code, where n is the symbol length

of the encoded message, k is the symbol length of the

original message, and d is the minimal symbol distance

between any two encoded messages[3].

Definition 1: Let K be a finite field and p and q be two

integers. Let x M x be a mapping from
pK to

qK defined by the q p matrix M . We say that it is a linear

multipermutation (or an MDS matrix) if the set of all pairs

(,)x M x is an MDS code, i.e. a linear code of

dimension p , length p q and minimal distance 1q  [4].

The following theorem [5] will depict the character of

MDS matrix from the angle of a subdeterminant.

Theorem 1: A matrix is an MDS matrix if and only if

every sub-matrix is non-singular.

MDS matrices are constructed by two types of matrices:

circulant and Hadamard matrices.

Circulant matrices: Given k elements 0 1 1,, k    , a

circulant matrix M is constructed with each entry

, ()modi j i j kM   .

 Given k elements 0 1 1,, k    ,

a Hadamard matrix M is constructed with each entry

, ()i j i jM   .

Fatma Ahmed and Dalia Elkamchouchi

530

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

DOI: 10.7763/IJCCE.2013.V2.242

Strongest AES with S-Boxes Bank and Dynamic Key

MDS Matrix (SDK-AES)

Manuscript received January 11, 2013; revised April 12, 2013.

Fatma Ahmed is with the Dept. of Electrical Engineering, Alexandria

Higher Institute of Engineering and Technology (AIET) Alexandria, Egypt

(e-mail: moonyally@yahoo.com).

Dalia Elkamchouchi is with the Dept of Electrical Engineering, Faculty of

Engineering, Alexandria University Alexandria, Egypt (e-mail:

Daliakamsh@yahoo.com).

Hadamard matrices:

II. SDK-AES

SDK-AES is block cipher; it can encrypt blocks

ofplaintext of length 128 byte into blocks of the same length.

The key length can be 128, 192, or 256 bytes. The total

number of rounds depends on the key length that can be 10,

12 or 14 respectively. We assume a key length of 128 byte,

which is likely to be the one most commonly implemented.

The input to the encryption and decryption algorithms is

block of length 128 byte. This block is copied into the 16×8

matrix of bytes, which is modified at each stage of encryption

or decryption. After the final stage, State is copied to an

output matrix. Similarly the 128 byte key is depicted as 16×8

matrix of bytes. This key is then expanded into an array of

key schedule words; each word is four bytes and the total key

schedule is 32×11 words. The encryption and decryption

process of SDK-AES resembles that of AES. The Fig. 1

shows the overall structure of SDK-AES.

(a) Encryption structure (b) Decryption structure

Fig. 1. SDK-AES algorithm

A. S-Boxes Bank

SDK-AES is a technique seeking to make AES key

depending. In this paper, key dependent S-boxes bank act

like rotor mechanism [6] is introduced. The S-boxes bank

contains two S-boxes, the first S-box is one used for AES

algorithm. In order to maintain the structure of cipher to be

simple, the second S-box constructs from shifted the first

S-box by amount calculated by the user key. At the first step

we compute the Checksum "Adler-32" for the user key. The

resulting output is thirty-two bits. We use the checksum

algorithm because it will yield a different result when the user

key is changed. The resulting output from the Checksum will

be divided into four sub blocks each one with length 8 bits.

These four sub blocks will be XORed together to produce

one block with length eight bits representing the number that

we use to shift the first S-box to generate the second one. In

encryption process, the input byte is mapped into a new byte

through the S-boxes bank. At the first, the input byte is

mapped by using the first S-box. The output will be the input

to the second S-box. If the S-box rotates one byte then after

256 times the S-box will return to its initial position and this

operation will be repeated every 256 bytes. In our system,

the second S-box will be rotated by irregular step. This

rotation consists of two steps: the first step is rotating the

second S-box in the tenth round after mapping each byte by

odd numbers (1, 3, 5 and 7). First we rotate the second S-box

by one byte until we reach 256 bytes then we rotate it by three

bytes for the next 256 input bytes. Then we rotate it by five

bytes for the next 256 input bytes. Finally we rotate it by

seven bytes until we have 256 input bytes. At the second step

we rotate the second S-box after the tenth round is completed

by one byte. These two steps guarantee that the S-box rotates

in irregular manner because after encrypt each block of

plaintext the second S-box will be in different arrangement so

even we have repeated data, the output will be totally

different. The basic idea is make the S-box like rotor

cryptosystem with maintain the security and the simple

decryption. In decryption algorithm we don't rotate the

S-boxes or even scanned for output like rotor, we only

subtract the output from the inverse-second S-box with the

number of times that second S-box bytes rotated. We rotate

the second S-box only and keep the first one stationary

because the second one only known to sender and receiver.

B. ShiftRows Transformation

The input data is arranged in sixteen rows and eight

columns. The forward shift row transformation is performed

in following way: The first and ninth row of State is not

altered. For the second row, a 1-byte circular left shift is

performed. For the third row, a 2-byte circular left shift is

performed. And so on until the eighth row, a 7-byte circular

left shift is performed [7]. Then we circular left shift the tenth

row by one byte, the eleventh row by two bytes and so on

until the sixteen row, a seven-byte circular left shift is

performed. The inverse shift row transformation performs the

circular shifts in the opposite direction for each of the

fourteenth rows.

C. The New Efficient MDS Matrix

In SDK-AES, we design new dynamic MDS matrixes

which depend on the user key. The number of matrixes is

eight each one depends on the user key. In encryption process

we only use one matrix from eight for every data block. The

choice of this one depends on the subkeys and plaintext. The

new matrixes are self inverse so that same matrix can be used

for decryption algorithm, which decreases the complexity of

system. The new MDS matrix is 4 4 Circulant matrix. MDS

is (12,8,5) . MDS property of the matrix is calculated i.e. a

(12,8,5) code is MDS if d = n – k + 1.This can be done by

checking the branch number of the transformation. The input

with one or two active byte column is multiplied with the

matrix and the output column is checked, if the total number

of active bytes including input and output bytes is equal to 5

then it satisfies the property of MDS. The new MDS matrix is

checked for the involution property. We design it by provide

the involution conditions which can calculate from the next

matrix:

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

b b b b

b b b b

b b b b

b b b b

 
 
 
 
 
 

 (1)

531

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

These conditions relative to the above matrix are:

0 2 1 3{01} b b b b   (2)

So we choose elements for the new MDS matrix that

satisfy these conditions. We choose 1 3 1b b  . Because

multiplications by 1 are “free” operations so they can

improve the computational efficiency of MDS matrices. The

elements 0b and 2b are depend on key. At the first step we

take the thirty-two bits (the output from the checksum of the

key) and divided it into eight sub blocks each one has length

four bits. The value of each sub block represents the element

0b in each D-MDS matrix. The element 2b is calculated from

the addition inverse for 0b in 4(2)GF .

0 2

0 2

2 0

02

01 01

01 01

0101

01 01

b b

b b

b b

bb

 
 
 
 
 
 

 (3)

In SDK-AES, The data is copied into the 16×8 matrix of

bytes. First we divide the state of data into sub states each one

is 4×4 matrix of bytes. So we have eight sub states. Each

element in the product matrix is the sum of products of

elements of one row and one column. In this case, the

individual additions and multiplications are performed

in 8(2)GF . In our cipher, we ensure that each byte will effect

MDS matrix. We use the following equation 4 which

represented mathematica 9sub-program to perform "row

exchange":

If [2, [6]; [6] [1]; [1]]

If [3, [14]; [14] [9]; [9]]

If [4, [12]; [12] [7]; [7]]

If [5, [8]; [8] [3]; [3]]

If [6,

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux

   

   

   

   

 [13]; [13] [2]; [2]]

If [7, [10]; [10] [5]; [5]]

If [8, [16]; [16] [11]; [11]]

If [9, [15]; [15] [4]; [4]]

row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

  

   

   

   

 (4)

D. SDK-AES Key Expansion

The SDK-AES key expansion algorithm takes as input a

32-word (128-byte) key and produces a linear array of 32×11

words. This is sufficient to provide a 32-word round key for

the initial AddRoundKey stage and each of the 10 rounds of

the cipher. The key expansion procedure of SDK-AES is like

the expansion procedure of AES.

III. SECURITY ANALYSIS

A. Avalanche Effect

In cryptography, the avalanche effect refers to a desirable

property of cryptographic algorithms. The avalanche effect is

evident when an input is changed slightly (for example,

flipping a single bit) the output changes significantly (e.g.

half the output bits flip). In the case of quality block ciphers,

such a small change in either the key or the plaintext should

cause a drastic change in the ciphertext. Constructing a cipher

to exhibit a substantial avalanche effect is one of the primary

design objectives. The avalanche effect is calculated as:

No. of flipped in the ciphered text
Avalanche Effect= 100%

No. of bits in the ciphered text
 (5)

In our case, we take two plaintexts and two blocks of data

of length 128 bytes flipping one bit from everyone in

different positions and calculate the avalanche effect. Then

we flip the user key in different positions and calculate the

avalanche effect [8]. The following results are obtained after

calculating the respective Avalanche Effects.

TABLE I: AV EFFECT FOR 1 BIT CHANGE IN THE PLAINTEXT

Plaintext

Length of

plaintext

in bits

Change first

bit in plaintext

Change last

bit in plaintext

Change middle

bit in plaintext

AES
SDK-

AES
AES

SDK-

AES
AES

SDK-

AES

Case 1 158720 0.03% 0.33% 0.04% 0.32% 0.04% 0.36%

Case 2 200000 0.04% 0.3% 0.04% 0.3% 0.03% 0.3%

Case 3 1024 5.8% 51.4% 5.9% 52.3% 5.3% 51.9%

Case 4 1024 7.1% 51.4% 7.1% 51.3% 6.3% 52.7%

TABLE II: AVA EFFECT FOR 1 BIT CHANGE IN THE USER KEY

Plaintext

Length of

plaintext in

bits

Change first

bit in key

Change

middle bit in

key

Change last

bit in key

SDK-

AES
AES

SDK-

AES
AES

SDK-

AES
AES

Case 1 158720 53.1% 49.2% 52.1% 49.2% 53.1% 49.1%

Case 2 200000 52.1% 45.3% 51.5% 45.3% 51.1% 48.5%

Case 3 1024 52.8% 47.7% 52.7% 47.7% 52.8% 47.7%

Case 4 1024 52.5% 48.8% 52.9% 48.8% 52.5% 49.9%

The avalanche effect of the proposed algorithm is

producing very high change in ciphertext as comparison with

AES because in AES if only one bit changes, it effects on its

data block not all the blocks, while in SDK-AES because we

rotate S-box using the output ciphertext so if only one bit

changes it produces different rotation in S-box.

B. Secret Data Groups

Considering the secret data used in AES, the brute force

attack for the key in the case of 128 bit block

is
128 38(2 3.4 10)  . Considering the secret data used in

SDK-AES, the brute force attack for the key in the case of

128 bytes block is
128 8 3082 1.8 10   . The S-box in SDK-AES

will produce different substitution in the last round because it

shifted after every output byte by irregular step. To calculate

the brute force attack in this case we will find a huge number

of trails to break the system.

C. Language Statistics

Language redundancy [9] is the greatest problem for any

cryptosystem. The cryptanalyst uses the language

redundancy to attack cryptosystems ciphertext. If the

message is long enough, the cryptanalyst computes the

frequency of each of the characters and consider different

number of combinations up to the length of the cryptosystem

block. The cryptanalyst will then try to estimate the plaintext

from this statistical result. A cryptosystem is considered

unbreakable against statistical analysis if its ciphertext has

532

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

in all other bytes by performed after the "row exchange"

flat distribution. To implement the strength of new

SDK-AES, Figs 2&3 show the plaintext statistics of the used

file. The ciphertext statistics of AES and new SDK-AES are

plotted in Figs 4 to 7. From these figures we find that our new

system effectively hides the characteristics of ciphertext

especially for repeated data.

50 100 150 200 250
ASCII

5

10

15

20

25

frequency

 50 100 150 200 250
ASCII

5000

10000

15000

20000

frequency

Fig. 2. Plaintext statistics of a text file. Fig. 3. Repeated plaintext statistics

50 100 150 200 250
ASCII

60

70

80

90

100

frequency

Fig. 4. SDK-AES system ciphertext statistics

50 100 150 200 250
ASCII

20

40

60

80

100

frequency

Fig. 5. AES ciphertext statistics

50 100 150 200 250
ASCII

60

70

80

90

100

frequency

Fig. 6. SDK-AES ciphertext statistics of a message consisting of 20 Kbytes

of character "e"

50 100 150 200 250
ASCII

200

400

600

800

1000

1200

frequency

Fig. 7. AES ciphertext statistics of a message consisting of 20 Kbytes of

character "e"

D. NIST Statistical Suite

The National Institute of Standards and Technology (NIST)

[10] develops a Test Suite as a statistical package consisting

of 16 tests that were developed to test the randomness of

(arbitrarily long) binary sequences produced by either

hardware or software based Cryptographic random or

pseudorandom number generators. These tests focus on a

variety of different types of non randomness that could exist

in a sequence. Some tests are decomposable into a variety of

subtests. The average values of the statistical tests for both

algorithms were given in Table III.

TABLE III: SDK-AES VS. AES STATISTICAL TESTS

Test name Algorithm

SDK-AES AES

Frequency (Monobit) Test 100% Pass 100% Pass

Frequency Test within a Block 100% Pass 100% Pass

Runs Test 100% Pass 100% Pass

the Longest Run of 1's in a Block Test 100% Pass 100% Pass

Binary Matrix Rank Test 100% Pass 100% Pass

Discrete Fourier Transform Test 100% Pass 100% Pass

Non-overlap Template Matching Test 100% Pass 100% Pass

Overlap Template Matching Test 100% Pass 97% Failed

Maurer’s “Universal Statistical” Test 100% Pass 100% Pass

Lempel-Ziv Compression Test 100% Pass 99% Pass

Linear Complexity Test 100% Pass 98% Failed

Serial Test 99% Pass 97% Failed

Approximate Entropy Test 100% Pass 100% Pass

Cumulative Sums (Cusum) Test 99% Pass 100% Pass

Random Excursions Test 100% Pass 97% Failed

Random Excursions Variant Test (α =

0.05)
98% Pass 96% Pass

IV. CONCLUSION

In this paper, a new improved version of AES has been

proposed. SDK-AES doesn’t contradict the security and

simplicity of the AES algorithm. We tried to keep all the

mathematical criteria for AES without change. We have

improved the security of AES by increase the size of data

block to 128 bytes and the size of key to 128, 192 and 256

bytes. Also we make its S-box to be acting like the rotor

cryptosystem with maintaining the decryption operation

simple and make it to be key dependent. . We have improved

the MDS matrix and make it depends on the user key and be

itself at decryption (involution property). In SDK-AES

system if only one bit change in the plaintext or the user key,

it causes more than half of the ciphertext to be change.

Finally, our proposal is rigid to withstand the well-known

methods of brute-force.

533

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndael: AES–The Advanced

Encryption Standard, Springer-Verlag, 2002.

[2] W. Stallings, Cryptography and Network Security Principles and

Practices, Prentice Hall, Fourth Edition, 2005.

[3] B. A. Forouzan, Cryptography and Network Security, TATA-Mcgraw

hill publication 2007 edition.

[4] P. Junod and S. Vaudenay, “Perfect diffusion primitives for block

ciphers: building efficient MDS matrices,” in Proc. Selected Areas in

Cryptography 2004, Waterloo, Canada, pp. 84-99, August 9-10, 2004.

[5] F. MacWilliams and N. Sloane, “The theory of error-correcting codes,”

North-Holland Mathematical Library, vol. 16, pp. 762, 1977.

[6] W. O. Chan, “Cryptanalysis of SIGABA,” Master’s Thesis,

Department of Computer Science, San Jose State University, May

2007.

[7] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm:

Submission, September 3, 1999, available at [2].

[8] A. Kumar, “Effective implementation and avalanche effect of AES,”

International Journal of Security, Privacy and Trust Management

(IJSPTM), vol. 1, no. 3/4, pp. 31-35, August 2012.

[9] B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source

Code in C, Wiley Computer Publishing, Second Edition, John Wiley &

Sons, Inc.

[10] NIST, A Statistical Test Suite for Random and Pseudorandom

Generators for Cryptographic Applications, NIST Special Publication,

2003.

Fatma Ahmed held a Masters' of science in Electrical

Engineering from Faculty of Engineering, Alexandria

University. She works on Alexandria Higher Institute of

Engineering and Technology. She studies for Ph.D. in

Electrical Engineering from Faculty of Engineering,

Alexandria University.

534

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

Dalia Elkamchouchi held a Masters' of science in

Electrical Engineering from Faculty of Engineering,

Alexandria University. She works on Alexandria Higher

Institute of Engineering and Technology. She Held a

Ph.D. in Electrical Engineering from Faculty of

Engineering, Alexandria University.

