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Abstract—With computers, security is only a matter of 

software. The Internet has made computer security much more 

difficult than it used to be. In this paper, we introduce modified 

AES with S-boxes bank to be acted like rotor mechanism and 

dynamic key MDS matrix (SDK-AES). In this paper we try to 

make AES key dependent and resist the frequency attack. The 

SDK-AES algorithm is compared with AES and gives excellent 

results from the viewpoint of the security characteristics and 

the statistics of the ciphertext. Also, we apply the randomness 

tests to the SDK-AES algorithm and the results shown that the 

new design passes all tests which proven its security. 

 
Index Terms—Advanced encryption algorithm (AES), 

S-boxes bank, rotor, frequency analysis, inverse power function, 

MDS. 

I. INTRODUCTION 

A. AES 

AES is short for Advanced Encryption Standard and is a 

United States encryption standard defined in Federal 

Information Processing Standard (FIPS) 192, published in 

November 2001 [1]. It was approved as a federal standard in 

May 2002. AES is the most recent of the four current 

algorithms ratified for federal us in the United States.  

Rijndael submitted by Joan Daemen and Vincent Rijmen, is a 

symmetric key, iterated block cipher based on the arithmetic 

in the Galois Field 8(2 )GF . AES Input and Output consists of 

128 bit sequences. The cipher key is 128, 192, or 256 bits. 

Byte is the unit of processing. Input blocks are 16 bytes each. 

AES operations are Conducted on a two dimensional array of 

bytes called the state. The state consists of four rows of bytes 

each containing
bN bytes where 

bN is the block length divided 

by 32. Rijndael round function acts on a state 
rN times, where 

rN is equal to the number of rounds that can be 10, 12 or 14 

rounds, depending on
kN , where 

kN is equal to the number of 

32-bit words comprising the Cipher Key [2]. Rijndael round 

is consists of 4 transformations: 

Sub bytes: Transformation in the Cipher that processes 

the State using a nonlinear byte substitution table (S-box) that 

operates on each of the State bytes independently which 

provides nonlinearity and confusion. 

Shift rows: Transformation in the Cipher that processes 

 

 

 

the State by cyclically shifting the last three rows of the State 

by different offsets to provide inter-column diffusion. 

Mix columns: Transformation in the Cipher that takes all 

of the columns of the State and mixes their data 

(independently of one another) to produce new columns 

which provides inter-Byte diffusion. 

Add round key: Transformation in the Cipher and Inverse 

Cipher in which a RoundKey is added to the State using an 

XOR operation which provides confusion. 

This paper introduces a new modification on AES 

algorithm to exhibit a substantial avalanche effect, to ensure 

that no trapdoor is present in the cipher, to make the key 

schedule so strong that the knowledge of one round key does 

not help in finding the cipher key or other round keys, and to 

resist the frequency analysis on ciphertext. 

B. The MDS Matrix 

Maximum distance separable matrixes (MDS) are widely 

used in design of block ciphers and hash functions etc. Based 

on the character of its differential branch number, MDS 

matrix is widely used and the arithmetic using MDS matrixes 

can effective against differential cryptanalysis and linear 

cryptanalysis. A linear code over Galois field (2 )pGF is 

denoted as an ( , , )n k d code, where n  is the symbol length 

of the encoded message, k  is the symbol length of the 

original message, and d  is the minimal symbol distance 

between any two encoded messages[3]. 

Definition 1: Let K be a finite field and p and q be two 

integers. Let x M x be a mapping from 
pK to 

qK defined by the q p matrix M . We say that it is a linear 

multipermutation (or an MDS matrix) if the set of all pairs 

( , )x M x is an MDS code, i.e. a linear code of 

dimension p , length p q and minimal distance 1q  [4]. 

The following theorem [5] will depict the character of 

MDS matrix from the angle of a subdeterminant. 

Theorem 1: A matrix is an MDS matrix if and only if 

every sub-matrix is non-singular. 

MDS matrices are constructed by two types of matrices: 

circulant and Hadamard matrices. 

Circulant matrices: Given k elements 0 1 1, ....., k    , a 

circulant matrix M is constructed with each entry 

, ( )modi j i j kM   . 

 Given k elements 0 1 1, ......., k    , 

a Hadamard matrix M is constructed with each entry 

, ( )i j i jM   . 
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II. SDK-AES 

SDK-AES is block cipher; it can encrypt blocks 

ofplaintext of length 128 byte into blocks of the same length. 

The key length can be 128, 192, or 256 bytes. The total 

number of rounds depends on the key length that can be 10, 

12 or 14 respectively. We assume a key length of 128 byte, 

which is likely to be the one most commonly implemented. 

The input to the encryption and decryption algorithms is 

block of length 128 byte. This block is copied into the 16×8 

matrix of bytes, which is modified at each stage of encryption 

or decryption. After the final stage, State is copied to an 

output matrix. Similarly the 128 byte key is depicted as 16×8 

matrix of bytes. This key is then expanded into an array of 

key schedule words; each word is four bytes and the total key 

schedule is 32×11 words. The encryption and decryption 

process of SDK-AES resembles that of AES. The Fig. 1 

shows the overall structure of SDK-AES. 

 
(a) Encryption structure                        (b) Decryption structure 

Fig. 1. SDK-AES algorithm 

A. S-Boxes Bank 

SDK-AES is a technique seeking to make AES key 

depending.  In this paper, key dependent S-boxes bank act 

like rotor mechanism [6] is introduced. The S-boxes bank 

contains two S-boxes, the first S-box is one used for AES 

algorithm. In order to maintain the structure of cipher to be 

simple, the second S-box constructs from shifted the first 

S-box by amount calculated by the user key. At the first step 

we compute the Checksum "Adler-32" for the user key. The 

resulting output is thirty-two bits. We use the checksum 

algorithm because it will yield a different result when the user 

key is changed. The resulting output from the Checksum will 

be divided into four sub blocks each one with length 8 bits. 

These four sub blocks will be XORed together to produce 

one block with length eight bits representing the number that 

we use to shift the first S-box to generate the second one. In 

encryption process, the input byte is mapped into a new byte 

through the S-boxes bank. At the first, the input byte is 

mapped by using the first S-box.  The output will be the input 

to the second S-box. If the S-box rotates one byte then after 

256 times the S-box will return to its initial position and this 

operation will be repeated every 256 bytes.  In our system, 

the second S-box will be rotated by irregular step.  This 

rotation consists of two steps: the first step is rotating the 

second S-box in the tenth round after mapping each byte by 

odd numbers (1, 3, 5 and 7). First we rotate the second S-box 

by one byte until we reach 256 bytes then we rotate it by three 

bytes for the next 256 input bytes. Then we rotate it by five 

bytes for the next 256 input bytes. Finally we rotate it by 

seven bytes until we have 256 input bytes. At the second step 

we rotate the second S-box after the tenth round is completed 

by one byte. These two steps guarantee that the S-box rotates 

in irregular manner because after encrypt each block of 

plaintext the second S-box will be in different arrangement so 

even we have repeated data, the output will be totally 

different. The basic idea is make the S-box like rotor 

cryptosystem with maintain the security and the simple 

decryption. In decryption algorithm we don't rotate the 

S-boxes or even scanned for output like rotor, we only 

subtract the output from the inverse-second S-box with the 

number of times that second S-box bytes rotated. We rotate 

the second S-box only and keep the first one stationary 

because the second one only known to sender and receiver.  

B. ShiftRows Transformation 

The input data is arranged in sixteen rows and eight 

columns. The forward shift row transformation is performed 

in following way: The first and ninth row of State is not 

altered. For the second row, a 1-byte circular left shift is 

performed. For the third row, a 2-byte circular left shift is 

performed. And so on until the eighth row, a 7-byte circular 

left shift is performed [7]. Then we circular left shift the tenth 

row by one byte, the eleventh row by two bytes and so on 

until the sixteen row, a seven-byte circular left shift is 

performed. The inverse shift row transformation performs the 

circular shifts in the opposite direction for each of the 

fourteenth rows. 

C. The New Efficient MDS Matrix 

In SDK-AES, we design new dynamic MDS matrixes 

which depend on the user key. The number of matrixes is 

eight each one depends on the user key. In encryption process 

we only use one matrix from eight for every data block. The 

choice of this one depends on the subkeys and plaintext. The 

new matrixes are self inverse so that same matrix can be used 

for decryption algorithm, which decreases the complexity of 

system. The new MDS matrix is 4 4  Circulant matrix. MDS 

is (12,8,5) . MDS property of the matrix is calculated i.e. a 

(12,8,5) code is MDS if d = n – k + 1.This can be done by 

checking the branch number of the transformation. The input 

with one or two active byte column is multiplied with the 

matrix and the output column is checked, if the total number 

of active bytes including input and output bytes is equal to 5 

then it satisfies the property of MDS. The new MDS matrix is 

checked for the involution property. We design it by provide 

the involution conditions which can calculate from the next 

matrix: 

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

b b b b

b b b b

b b b b

b b b b

 
 
 
 
 
 

                                  (1) 
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These conditions relative to the above matrix are: 

0 2 1 3{01}                  b b b b                     (2) 

So we choose elements for the new MDS matrix that 

satisfy these conditions. We choose 1 3 1b b  . Because 

multiplications by 1 are “free” operations so they can 

improve the computational efficiency of MDS matrices. The 

elements 0b  and 2b  are depend on key. At the first step we 

take the thirty-two bits (the output from the checksum of the 

key) and divided it into eight sub blocks each one has length 

four bits. The value of each sub block represents the element 

0b in each D-MDS matrix. The element 2b is calculated from 

the addition inverse for 0b in 4(2 )GF . 
 

0 2

0 2

2 0

02

01 01

01 01

0101

01 01

b b

b b

b b

bb

 
 
 
 
 
 

                           (3) 

 

In SDK-AES, The data is copied into the 16×8 matrix of 

bytes. First we divide the state of data into sub states each one 

is 4×4 matrix of bytes. So we have eight sub states. Each 

element in the product matrix is the sum of products of 

elements of one row and one column. In this case, the 

individual additions and multiplications are performed 

in 8(2 )GF . In our cipher, we ensure that each byte will effect 

MDS matrix. We use the following equation 4 which 

represented mathematica 9sub-program to perform "row 

exchange": 

If [ 2, [6]; [6] [1]; [1] ]

If [ 3, [14]; [14] [9]; [9] ]

If [ 4, [12]; [12] [7]; [7] ]

If [ 5, [8]; [8] [3]; [3] ]    

If [ 6,

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux

   

   

   

   

 [13]; [13] [2]; [2] ]

If [ 7, [10]; [10] [5]; [5] ]

If [ 8, [16]; [16] [11]; [11] ]

If [ 9, [15]; [15] [4]; [4] ]

row row row row aux

r aux row row row row aux

r aux row row row row aux

r aux row row row row aux

  

   

   

   

                 (4) 

D. SDK-AES Key Expansion 

The SDK-AES key expansion algorithm takes as input a 

32-word (128-byte) key and produces a linear array of 32×11 

words. This is sufficient to provide a 32-word round key for 

the initial AddRoundKey stage and each of the 10 rounds of 

the cipher. The key expansion procedure of SDK-AES is like 

the expansion procedure of AES. 

 

III. SECURITY ANALYSIS 

A. Avalanche Effect 

In cryptography, the avalanche effect refers to a desirable 

property of cryptographic algorithms. The avalanche effect is 

evident when an input is changed slightly (for example, 

flipping a single bit) the output changes significantly (e.g. 

half the output bits flip). In the case of quality block ciphers, 

such a small change in either the key or the plaintext should 

cause a drastic change in the ciphertext. Constructing a cipher 

to exhibit a substantial avalanche effect is one of the primary 

design objectives. The avalanche effect is calculated as:  

No. of flipped in the ciphered text
Avalanche Effect= 100%

No. of bits in the ciphered text
        (5) 

In our case, we take two plaintexts and two blocks of data 

of length 128 bytes flipping one bit from everyone in 

different positions and calculate the avalanche effect. Then 

we flip the user key in different positions and calculate the 

avalanche effect [8]. The following results are obtained after 

calculating the respective Avalanche Effects. 

TABLE I: AV EFFECT FOR 1 BIT CHANGE IN THE PLAINTEXT 

Plaintext 

Length of 

plaintext 

in bits 

Change first 

bit in plaintext 

Change last 

bit in plaintext 

Change middle 

bit in plaintext 

AES 
SDK- 

AES 
AES 

SDK- 

AES 
AES 

SDK-

AES 

Case 1 158720 0.03% 0.33% 0.04% 0.32% 0.04% 0.36% 

Case 2 200000 0.04% 0.3% 0.04% 0.3% 0.03% 0.3% 

Case 3 1024 5.8% 51.4% 5.9% 52.3% 5.3% 51.9% 

Case 4 1024 7.1% 51.4% 7.1% 51.3% 6.3% 52.7% 
 

TABLE II: AVA EFFECT FOR 1 BIT CHANGE IN THE USER KEY 

Plaintext 

Length of 

plaintext in 

bits 

Change first 

bit in key 

Change 

middle bit in 

key 

Change last 

bit in key 

SDK- 

AES 
AES 

SDK- 

AES 
AES 

SDK- 

AES 
AES 

Case 1 158720 53.1% 49.2% 52.1% 49.2% 53.1% 49.1% 

Case 2 200000 52.1% 45.3% 51.5% 45.3% 51.1% 48.5% 

Case 3 1024 52.8% 47.7% 52.7% 47.7% 52.8% 47.7% 

Case 4 1024 52.5% 48.8% 52.9% 48.8% 52.5% 49.9% 
 

The avalanche effect of the proposed algorithm is 

producing very high change in ciphertext as comparison with 

AES because in AES if only one bit changes, it effects on its 

data block not all the blocks, while in SDK-AES because we 

rotate S-box using the output ciphertext so if only one bit 

changes it produces different rotation in S-box. 

B. Secret Data Groups  

Considering the secret data used in AES, the brute force 

attack for the key in the case of 128 bit block 

is
128 38(2 3.4 10 )  . Considering the secret data used in 

SDK-AES, the brute force attack for the key in the case of 

128 bytes block is
128 8 3082 1.8 10   . The S-box in SDK-AES 

will produce different substitution in the last round because it 

shifted after every output byte by irregular step. To calculate 

the brute force attack in this case we will find a huge number 

of trails to break the system.  

C. Language Statistics 

Language redundancy [9] is the greatest problem for any 

cryptosystem. The cryptanalyst uses the language 

redundancy to attack cryptosystems ciphertext. If the 

message is long enough, the cryptanalyst computes the 

frequency of each of the characters and consider different 

number of combinations up to the length of the cryptosystem 

block. The cryptanalyst will then try to estimate the plaintext 

from this statistical result. A cryptosystem is considered 

unbreakable against statistical analysis if its ciphertext has 
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in all other bytes by performed after the "row exchange"



flat distribution. To implement the strength of new 

SDK-AES, Figs 2&3 show the plaintext statistics of the used 

file. The ciphertext statistics of AES and new SDK-AES are 

plotted in Figs 4 to 7. From these figures we find that our new 

system effectively hides the characteristics of ciphertext 

especially for repeated data. 
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Fig. 2. Plaintext statistics of a text file.  Fig. 3. Repeated plaintext statistics 
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Fig. 4. SDK-AES system ciphertext statistics 
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Fig. 5. AES ciphertext statistics 
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Fig. 6. SDK-AES ciphertext statistics of a message consisting of 20 Kbytes 

of character "e" 

 

50 100 150 200 250
ASCII

200

400

600

800

1000

1200

frequency

 

Fig. 7. AES ciphertext statistics of  a message consisting of 20 Kbytes of 

character "e" 

D. NIST Statistical Suite 

The National Institute of Standards and Technology (NIST) 

[10] develops a Test Suite as a statistical package consisting 

of 16 tests that were developed to test the randomness of 

(arbitrarily long) binary sequences produced by either 

hardware or software based Cryptographic random or 

pseudorandom number generators. These tests focus on a 

variety of different types of non randomness that could exist 

in a sequence. Some tests are decomposable into a variety of 

subtests. The average values of the statistical tests for both 

algorithms were given in Table III. 

TABLE III: SDK-AES VS. AES STATISTICAL TESTS  

 

Test name                        Algorithm 

 

SDK-AES AES 

Frequency (Monobit) Test 100% Pass 100% Pass 

Frequency Test within a Block 100% Pass 100% Pass 

Runs Test 100% Pass 100% Pass 

the Longest Run of 1's in a Block Test 100% Pass 100% Pass 

Binary Matrix Rank Test 100% Pass 100% Pass 

Discrete Fourier Transform Test 100% Pass 100% Pass 

Non-overlap Template Matching Test 100% Pass 100% Pass 

Overlap Template Matching Test 100% Pass 97% Failed 

Maurer’s “Universal Statistical” Test 100% Pass 100% Pass 

Lempel-Ziv Compression Test 100% Pass 99% Pass 

Linear Complexity Test 100% Pass 98% Failed 

Serial Test 99% Pass 97% Failed 

Approximate Entropy Test 100% Pass 100% Pass 

Cumulative Sums (Cusum) Test 99% Pass 100% Pass 

Random Excursions Test 100% Pass 97% Failed 

Random Excursions Variant Test (α = 

0.05) 
98% Pass 96% Pass 

 

IV. CONCLUSION 

In this paper, a new improved version of AES has been 

proposed. SDK-AES doesn’t contradict the security and 

simplicity of the AES algorithm. We tried to keep all the 

mathematical criteria for AES without change. We have 

improved the security of AES by increase the size of data 

block to 128 bytes and the size of key to 128, 192 and 256 

bytes. Also we make its S-box to be acting like the rotor 

cryptosystem with maintaining the decryption operation 

simple and make it to be key dependent. . We have improved 

the MDS matrix and make it depends on the user key and be 

itself at decryption (involution property). In SDK-AES 

system if only one bit change in the plaintext or the user key, 

it causes more than half of the ciphertext to be change.  

Finally, our proposal is rigid to withstand the well-known 

methods of brute-force.  
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