

Abstract—Domain specific modelling (DSM) is used typically

on various computer application domains to alleviate

application programming by altering error prone text editing

work to graphical modelling and code generation. One rather

different domain is design space exploration of embedded

computer systems which composes greatly from complex

programming phases resulting abstract application and

platform models needed in system simulations. Objective of this

paper is to show that the advantages of DSM can be harnessed

perfectly well to this engineering domain. Previously has been

shown that with a little pinch of imagination the concept of

DSM can be applied on virtual system modelling phases. In this

paper we describe how DSM tool and domain specific language

are applied to practical exploitation of virtual system model, i.e.

to performance simulation and analysis of simulation results.

We share also pros and cons from explored appliance of DSM

for performance exploration which according our research is

valid method.

Index Terms—Back-annotation, embedded system, DSM,

performance exploration, simulation, virtual system.

I. INTRODUCTION

Interactive mobile devices are nowadays everywhere and

they are capable for running impressive multimedia

applications. Trend is that application complexity increase

continues like it has done many years. Expectations towards

new gadgets, on which the applications of future are used, are

therefore high. Because of the increasing application

complexity it is easy to figure out that complexity of

embedded system computing architecture increases also

rapidly. Application complexity and computing architecture

complexity are already difficult issues to cope for designers

and the need for new ideas and design methods is

continuously underlined and explored [1].

Complexity can be managed by developing new

development methods which support future trends of

applications and computing platforms. Applications are

nowadays often multithreaded and parallel programming

paradigms are under continuous exploration [2]. Application

development framework which alleviates the multithreading

and parallel programming challenges can be the way to

enable the development of future applications. Domain

specific modelling (DSM) is an intelligent application

development methodology which has been adopted on

Manuscript received February 20, 2013; revised April 16, 2013. This

work is supported by the European Commission, Tekes – the Finnish

Funding Agency for Technology and Innovation, and VTT under the grant

agreements ARTEMIS-2010-1-269362 PRESTO.

Janne Vatjus-Anttila is with the VTT Technical Research Centre of

Finland, Oulu, FI-90571 Finland (e-mail: janne.vatjus-anttila@vtt.fi).

various domains already and there is no reason for

abandoning DSM during era of parallel programming.

In computing platform development, the network-on-chip

architectures are explored and platform design methods

should evolve towards their requirements. All in all the

development of both software (SW) and hardware (HW) are

going in a sense to same direction and certain correlations can

be found from them. Still it seems that some similarities of

these two engineering domains are not fully and utilised e.g.

in the development tools. E.g. DSM and domain specific

language (DSL) solutions could be utilised strongly also in

HW development e.g. for VHDL and SystemC modelling

[3].

SW development and platform development have their

own characteristics, but they are also linked together because

they support each other. The development work of SW and

HW are different because of simple reasons. E.g. SW and

HW development tools differ from each other and study

programs to the SW and HW engineering domains are

different in universities. However SW development is

nowadays dependent of HW development and vice versa.

This is because SW needs to be tested in early development

phase on computer model of the HW. This is accomplished

with simulations in which application or abstract model of

application is executed on computer model of the target

platform. Likewise the HW designs are tested with

simulations by running applications on the computer models

of the designed HW.

Computer simulations are effective way for exploring

different features of platform design and modern design

space exploration of embedded system is based on

simulations. In order to run computer simulations simulator

and simulation model of explored systems, which comprises

from HW and SW descriptions, must be developed. The

simulation model is piece of code written with suitable

programming language, e.g. with SystemC. In other words

making simulation model is programming task as well as

writing piece of application code especially when simulation

model modelling GUI is not available. This perception is

important key for finding more similarity from application

development and simulation model development. What helps

programming of application can indeed help developing of

the abstract application and platform models needed in

simulation model design which supports the idea of using

DSLs for design space exploration.

One obvious similarity between application and simulation

model development tools is user interface that are not so

different. Nowadays there are graphical user interfaces (GUI)

for everything one can imagine. Designing of the GUIs has

been done very easy with WYSIWYG GUI builder tools

(what you see is what you get) [4]. Command line interfaces

Janne Vatjus-Anttila

Domain-Specific Front-End For Virtual System

Performance Exploration

495

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

DOI: 10.7763/IJCCE.2013.V2.234

(CLI) are also used for various purposes like compiling

which can’t be skipped in either application or simulation

model development. Scripting is often used as supporting

mean of CLI or as simulator interface. Integrated

development environments (IDE) are highly configurable

SW development frameworks which can be modified and

used as wall to wall development environments in several

application and platform design domains by utilising plugins

that enable use of external tools in handy way from the IDEs

[5]. DSL can also work as user interface in cases where DSL

or hosting DSM tool enables running of external tools and

pass data from design modelled with DSL to the external

tools.

There have been few big revolutions in productivity of SW

development [6]. Assembly was the programming language

before C language. Object oriented language increased

features of clause languages and UML started the era of

graphical programming. DSM can be seen also as one

revolution in the SW development methods. As well as it

suits for application development it suits perfectly well also

for developing simulation models for design space

exploration which comprises greatly from programming

tasks. This is why DSM suits also for performance

exploration i.e. a form of design space exploration.

ABSOLUT is a methodology and tool framework which has

been developed for that purpose [7]. Recently a front-end

comprising from DSLs has been prototyped for ABSOLUT

modelling purposes [8].

The research of ABSOLUT and DSM integration has been

continued towards practical exploration work where

ABSOLUT methodology based virtual system is used for

performance exploration with the domain specific front-end.

With this paper we show how front-end has been upgraded to

enable running of performance simulations and analysis of

performance results. In addition, our approach for

configuring sampling of the performance data and

performance data back-annotation to the domain specific

front-end is covered.

Following sections of paper enlarge on few relevant topics

of our work. Section II reviews virtual system exploration

front-end characteristics. In Section III, the potential of DSM

in composing of exploration front-end is considered. Section

IV presents the performance exploration front-end. Section V

shows use example of performance simulation and

exploration. Finally Section VI sums up conclusions.

II. VIRTUAL SYSTEM EXPLORATION FRONT-END

CHARACTERISTICS

Virtual system is a simulateable model of embedded

system which comprises from abstract application model and

abstract platform model where application is allocated on

platform resources [9]. It can be used for producing

simulation results by recording characteristics of the

application execution or load of platform resources during

simulation which after analysis can be used as guideline for

improving of either application and/or platform i.e. for design

space exploration. In ideal case the modelling and

exploration work can be done with single development

environment like CoFluent Studio [10]. The virtual system

modelling related characteristics were discussed in our

former paper [8]. Rest of this section describes our outlook of

virtual system front-end characteristics which relate to the

exploration part.

ABSOLUT framework is a special design space

exploration method and toolset for early phase performance

exploration. Among others it enables generation of

application workload models from application source code,

modelling of transaction level platform from existing

component models, making workload to platform allocations

and running performance simulations which result

information of many different performance matters. The

modelling front-end for ABSOLUT prototyped in the first

phase of our work is used basically for defining the virtual

system simulation model and its configuration which is

needed in order to make any exploration. The actual usage of

ABSOLUT virtual system model has its own characteristics

and understanding them helps to perceive requirements for

simulation and exploration user interface.

The simulation procedure may require configuration in

addition to the virtual system configuration. E.g. sample rate

according which performance data is recorded is simulation

parameter which must be selected in front-end. Badly chosen

sample rate produces too coarse performance data and makes

exploration according simulation results inaccurate.

ABSOLUT performance data recording contains built-in

averaging. However second averaging controlled from

front-end is required in order to adjust the amount of

recorded data. And it is also good to include the possibility to

select whether averaging is done during simulation or

afterwards because the performance data may be observed

either during or after the simulation.

ABSOLUT uses different performance probes and

counters to record information. In this study only status probe

that measures platform resource utilisation is observed.

Status probe records 6 different performance metrics. It

means that front-end should include possibility for filtering

the irrelevant performance data and record only interesting

metrics. This is another way to constrain amount of recorded

data.During simulation ABSOLUT outputs performance

information to terminal window. In addition to this

visualisation of recorded performance data in front-end

should be possible with exploration front-end. To enable this

performance data back-annotation from simulation model to

front-end is needed. Front-end should therefore include data

visualisation diagrams and/or animation according received

data.

It is obvious that there are many things which require

method(s) for passing information between front-end and

virtual system model. Some of that is configuration passed

before simulation but some is control or performance data

which is passed also during simulation. The front-end must

be able to execute external programs e.g. the simulation and

possibly some result analysis tools. In addition to the

ABSOLUT specific requirements it is common that

simulation and exploration front-end includes e.g. scripting

interface, debugging tools, component modelling feature and

management of performance records and other files. Some of

these may become relevant for ABSOLUT performance

exploration but for now they aren’t observed any further.

496

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

III. POTENTIAL OF DSM FOR EXPLORATION FRONT-END

COMPOSITION

Basic use of DSM is defining and implementing of new

DSLs which are basically graphical programming languages

and DSLs are then used for developing applications e.g. for

mobile devices. DSM is mostly done with DSM tools which

provide handy way for developing new DSLs [11],

commercial and free tool alternatives are available. The DSM

tool applicability for something else than just developing

DSLs or using these specific languages to develop the

applications, depends of the possibility to interact with

external tools from the DSM tool. This means running of

external tools and different ways to request, receive, send and

reply data. When external tools can be used e.g. by pressing

button on the toolbar and output of external tool can be

passed back to the used tool the DSM tool can be used to

develop front-end DSLs for external tools.

MetaEdit+ 4.5 [12], tool developed by MetaCase is DSM

tool which has interesting features for developing DSLs that

can also work as modeling and/or exploration front-ends.

External tools can be run from it and variety of data import

and export means is provided. Its features enable many

characteristics presented in Section II.

MetaEdit+ rererence language (MERL) is used for

defining generators which can be used to start external

programs and scripts. It enables also basic text file operations

which can be used for basic data passing through files.

MetaEdit+ contains also import and export features which

can be used for reading data in or writing data out. Generators

can be used manually and integrated also to objet symbols.

Tool hosts built-in SOAP server [13], which provides API

that can be used from SOAP client for reading information

from the object properties as well as writing new data to the

properties. API includes also few commands for animation

and updating of MetaEdit+ presentations. The client can be

implemented with number of programming languages with

existing open source libraries like gsoap for c/c++ [14].

MERL generator is handy way for running such client.

DSLs consists from objects which include properties and

to these properties it is possible to pass all configuration

information that is needed to configure the simulation, data

recording, data filtering, data back-annotation, data

visualisation, object animation etc.

Limitations of MetaEdit+ are in the simulation data

visualisation features. Reason is that there is no real

simulation data presentation support in the tool. But it is

possible to compose objects and symbols for them that can

work as histograms. It is possible to use single object as

histogram or compose it from several objects. SOAP client

takes care of the updating of histogram according data

generated in simulation.

IV. MEDICINE – DSM TOOL FRONT-END FOR

PERFORMANCE EXPLORATION

The ABSOLUT virtual system modelling front-end has

been upgraded with some simulation and exploration features

and front-end has been named to MEDICINE (MetaEdit+

interface for ABSOLUT design space exploration), Fig. 1.

Time will tell how MEDICINE can alleviate the ABSOLUT

users in performance exploration but here we describe the

new features of front-end that enable the front-end usage as

performance exploration user interface.

Fig. 1. MEDICINE is extension of modelling front-end which enables

also performance simulation and result analysis.

For now a special simulation or exploration front-end is

not developed but the workload to platform allocation

front-end is used as the user interface for defining the

simulation and exploration configuration and running

simulations. Front-end has been refined with Simulation

object which gives Y-chart form for the diagram used on the

front-end, Fig. 2.

Fig. 2. Y-chart that has been used to depict ABSOLUT in many contexts suits

well also for the simulation user interface.

During writing this article, Simulation object included

three properties: Simulation setup for naming the simulation,

Backannotation for defining performance data

back-annotation and Generation path to which simulation

output generates from simulation.

The Backannotation property points to Backannotation

object to allow reuse of the used back-annotation

configuration. This object has Name property and

Configuration property for the actual back-annotation

configuration which is list of back-annotation configurations

for platform resources of the virtual system.

The configuration defines the performance details that are

back-annotated and the way they are visualised in MetaEdit+

and rest of performance data recorded by status probe is

filtered. Example of back-annotation configuration for two

processors is presented below:

Arm0:4:Bar:a: :Arm1:5:BarGroup:

which defines that Arm0 processor performance data quality

4 is back-annotated to MetaEdit+ and visualised with Bar

objects and animation API command and Arm1 processor

performance data quality 5 is back-annotated to MetaEdit+

and visualised with BarGroup object. ABSOLUT status

probes interpret and use this configuration during

performance simulation.

497

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

SOAP has been used for back-annotation. MetaEdit+ API

is used by SOAP client developed in the ABSOLUT status

probe to pass the performance data. Client is also used to

compose the visualisation histogram on MetaEdit+ diagram

editor which visualises the performance data. Client must

have ids of the correct back-annotation object so that it can

fetch the back-annotation configuration. Current

implementation passes the id information via text file but

eventually after development is continued client can search

the correct back-annotation configuration.

A special Scoreboard diagram has been added to

MEDICINE front-end for performance data analysis.

Histograms are automatically set and visualised here

according back-annotation configuration and performance

data passed the SOAP client. Scoreboard diagram can be

used for both simulation time visualisations and summary

visualisations after simulations. Example of ScoreBoard

diagram is presented in Fig. 3. X-axis of histogram depicts

sample number and Y-axis depicts percentage of capacity.

Fig. 3. Score board histograms are used for performance data visualisation.

After setting the needed configurations to the Simulation

and Backannotation objects a performance simulation can be

started by a click of Simulation button on MetaEdit+ toolbar.

Simulation can be observed via textual output produced by

ABSOLUT and via MEDICINE ScoreBoard diagram. After

simulation the summary histogram of selected performance

metrics is updated on same ScoreBoard diagram.

The development of MEDICINE simulation

back-annotation and performance data visualisation features

has not been burdensome and it can be continued. However,

visualisation of performance data puts host machine in heavy

load and extra loading is not good when complex system is

being simulated. Therefore external simulation data

visualisation tools should be explored especially for

simulation time performance data visualisation.

Back-annotation with SOAP instead works well and it can be

used for other purposes like animation of the front-end

elements according performance data.

V. LOAD OBSERVATION CASE WITH THE PERFORMANCE

EXPLORATION FRONT-END

The purpose of this demonstration is to indicate that the

improvements made to MEDICINE can be used in

ABSOLUT performance exploration. Demonstration

consists of virtual system performance simulations

implemented in VirtualBox Ubuntu image on Windows 7

host machine and comparison of recorded performance

results. Focus is on the performance data back-annotation

and visualisation produced on ScoreBoard diagram.

MEDICINE was used to model the virtual system platform

and workload. Explored platform model is OMAP4 [15],

which have been modelled with MEDICINE Platform

Modelling Front-end. The platform model is simplified

version of real OMAP4 and it is built from components of

ABSOLUT component library. The workload for the case is

generated from FFMPEG video codec package [16] with

MEDICINE Workload Modelling Front-end, which utilises

the ABSOLUT workload generation tool [17]. Workload was

generated from transcoding use case where divx format video

clip was decompressed and compressed to avi format. Single

workload model and platform model can be used in the

exploration case.

Adjusting of platform parameters can be used to produce

differing performance results which are relevant for this

demonstration. Other means to produce differing

performance results are of course changing or altering of

either used workload or platform model between simulations.

Fig. 4. Data processing load of performance simulation 1.

Fig. 5. Data processing load of performance simulation 2.

Two different simulations were executed and the differing

simulation results are shown in figures Fig. 4 and Fig. 5.

Histograms of the figures present data processing load of

OMAP4 ARM cores. The difference results from adjusting of

cycle per instruction (CPI) value of both ARM cores. In

simulation 1 CPI value was 0.72 and in simulation 2 the CPI

value vas 0.52. CPI values are invented just for this

demonstration case. Adjusting of cache hit probabilities and

latencies could have been used instead of adjusting CPI

among other configuration alternatives. From resulted

histograms we see that in simulation 2 the platform data

processing load was lower than in simulation 1 which is

correct because the CPI value is lower in simulation 2.

In addition we can compare the histogram results to the

textual output generated by ABSOLUT. In simulation 1 the

average data processing load of ARM core0 was 72.7% of the

498

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

499

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

simulation time and in simulation 2 the average data

processing load of ARM core0 was 70.1 % of the simulation

time which verifies the result of histograms. Dropping of CPI

values naturally changes the duration of simulation which

can’t be seen from histograms because they are presentations

of the recorded performance data and in both figures

histograms comprises from 50 bars.

Table I summarises the demonstration results. Results

validate the goodness of histogram visualisation accuracy

when compared to the exact figures produced by ABSOLUT

and show that performance data back-annotation with SOAP

and performance data visualisation with MetaEdit+ can be

used in performance exploration.

TABLE I: FILTERED RESULTS OF THREE PERFORMANCE SIMULATIONS

Simulation 1 Simulation 2 Simulation 3

Back-annotation Full Full Summary

Simulation duration 652950744 ns 512463350 ns 652950372 ns

ARM CPI value 0.72 0.52 0.72

Avg. data processing

load ARM core0
76,2% 70.1% 76.2%

Avg. data processing

load core1
66.4% 61.2% 66.4%

Number of recorded

samples
131 103 131

Simulation duration

in real time
3m 10s 2m 55s 1m 44s

Table I includes also results from third simulation. In

simulation 3, which is rerun of simulation 1, used

back-annotation scheme was summary, which means that

performance data was back-annotated back to MEDICINE

once after simulation. Simulations 1 and 2 used

back-annotation scheme full which in addition to the

summary contains also simulation time back-annotation of

performance data. This distinction causes the big difference

of real time simulation duration between simulations 1 and 3.

Running of simulation 1 takes as much as 86 seconds longer

than running of simulation 3. Using of simulation time

back-annotations clearly slows down simulation, in this case

about 83%.

Reasons for slowdown can be found in both the SOAP

client and SOAP server. The client in ABSOLUT status

probe slows the simulation and the server slows down

MetaEdit+ which in addition of interpreting the SOAP

messages updates the histograms on ScoreBoard diagram.

Conclusion from this observation is that used method is no

good for simulation time back-annotation and performance

data visualisation. By using averaging or extra filtering in

client the simulation slowdown can be reduced. Other means

for decreasing slow down are e.g. developing of histogram

objects(s) or MetaEdit + API.

VI. CONCLUSION

In this paper the idea of exploiting of DSM and DSM tool

for performance exploration was set in test. The ABSOLUT

performance exploration front-end was upgraded during

work. Simulation, back-annotation and visualization of

performance data during and after simulation were under

observation in the demonstration and result show that

performance exploration can be done with the MEDICINE

front-end. Current implementation suits poorly for simulation

time performance data back-annotation and visualization

because of the significant simulation slowdown. MEDICINE

can however be developed further towards exploration

environment with some configurable IDE.

REFERENCES

[1] C. Driver, S. Reilly, É. Linehan, V. Cahill, and S. Clarke, “Managing

embedded systems complexity with aspect-oriented model-driven

engineering,” ACM Transactions on Embedded Computing Systems,

vol. 10, no. 2, pp. 1-26, December 2010.

[2] M. Forsell and V. Leppänen, “An extended PRAM-NUMA model of

computation for TCF programming,” in Proc. the 2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops, IPDPSW 2012, Shanghai, pp. 786-793, May 2012.

[3] V. Štuikys and R. Damaševičius, “Meta-programming and

model-driven meta-program development: Principles, processes and

techniques (advanced information and knowledge processing),”

Springer, August 22, 2012, pp. 66-74.

[4] W. O. Galitz, “The essential guide to user interface design: an

introduction to GUI design principles and techniques,” in Wiley

Desktop Editions Series, Third Edition, John Wiley & Sons, 2007, pp.

16-27.

[5] J. Rivieres and J. Wiegand, “Eclipse: a platform for integrating

development tools,” IBM Systems Journal, vol. 43, no. 2, pp. 371-383,

2004.

[6] J. P. Tolvanen. Implementing Your Own Domain-Specific Modeling

Languages: Hands-on. [Online]. Available:

http://www.sigs.de/download/oop_2011/downloads/files/Mo4_Tolvan

en_Implementing.pdf

[7] J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J-P. Soininen, P. Andersson,

and K. Tiensyrjä, “Combining UML2 application and SystemC

platform modelling for performance evaluation of real-time embedded

systems,” EURASIP Journal on Embedded Systems, vol. 2008, pp. 1-18,

January 2008.

[8] J. V. Anttila, J. Kreku, and K. Tiensyrjä, “Domain-specific front-end

for virtual system modeling,” EIAC-RTESMA’12 / workshop on

Graphical Modeling Language Development, Copenhagen, July 2-5,

2012.

[9] J. Borel, “European EDA Roadmap: Design Solutions for Europe,” in

MEDEA+/CATRENE Office, 6th Edition, March 2009, pp. 352.

[10] Cofluent Methodology for UML, UML SysML MARTE Flow for

CoFluent Studio, A CoFluent Design White Paper,2010, pp. 19.

[11] A. E. Kouhen, C. Dumoulin, S. Gérard, and P. Boulet, “Evaluation of

modeling tools adaptation,” hal-00706701, version 2 - 11, pp. 27, June

2012.

[12] MetaEdit+ Domain-Specific Modeling (DSM) environment. [Online].

Available: http://www.metacase.com/products.html

[13] R. M. Lerner, “At the forge: introducing SOAP,” Linux Journal, vol.

2001, no. 83es, Article No. 11, March 2001.

[14] R. A. V. Engelen and K. Gallivan, “The gSOAP toolkit for web

services and peer-to-peer computing networks,” in proc. the 2nd IEEE

International Symposium on Cluster Computing and the Grid

(CCGrid2002), Berlin, Germany, May 21-24, 2002, pp. 128-135.

[15] OMAP 4 Mobile Applications Platform. (2013). [Online]. Available:

http://www.ti.com/product/omap4430

[16] About FFmpeg. [Online]. Available:http://ffmpeg.org/about.html

[17] J. Kreku, “Early-phase performance evaluation of computer systems

using workload models and SystemC,” Ph.D. dissertation, University

of Oulu Graduate School; University of Oulu, Faculty of Technology,

Department of Computer Science and Engineering, 2012.

Janne Vatjus-Anttila received his M.Sc. (Tech.)

degree in electrical engineering from the University of

Oulu in 2007 since he had worked about a year as a

Trainee Research Scientist at VTT Technical Research

Centre of Finland. Since receiving the degree, he has

been working as a Research Scientist at VTT and has

contributed on research and industrial projects. His

current research interests include both, Design Space

Exploration with Virtual System and Virtual Platform models including

Domain Specific Modeling and low power embedded systems.

