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Abstract—In case we use a quantum computer, we have to 

construct the countermeasure. Due to the high efficiency and 

fast computation time, the multivariate quadratic public key 

systems are considered as an alternative to RSA or ECC based 

systems. However, the large key size is a fatal disadvantage of 

the multivariate quadratic public key systems. For this reason, 

the multivariate quadratic public key systems are not widely 

used. In this paper, we measure how much the private key 

memory size can be reduced by using a secure pseudo-random 

number generator in the UOV scheme. Almost 93% of the 

private key memory size is reduced. 

 

Index Terms—Multivariate quadratic public key system, 

pseudo-random number generator, UOV scheme. 

 

I. INTRODUCTION 

In modern society, public key cryptosystems are used in 

everywhere around us such as e-commerce, online banking 

and communication. We used to use RSA scheme which is 

the most popular based on the difficulty of factoring large 

integers. RSA is considered to be secure but it will be 

different when it comes to using quantum computers [1]. 

Other public key schemes such as ECC and El Gamal are the 

same. In case when the quantum era arrives, we have to 

establish the countermeasures. Multivariate schemes are 

considered as an alternative.  

Multivariate cryptosystem is based on the problem of 

solving Multivariate Quadratic equations (MQ-problem) 

over finite fields. MQ-problem is NP-complete. There are 

several public key schemes based on MQ-problem like [2], [3] 

and [4]. Although multivariate cryptosystem is quite fast, it is 

not widely used due to the large key size. For this reason, it is 

hard to be used for memory constrained devices such as smart 

cards and wireless sensor nodes. Therefore reducing the key 

size is a significant issue.  

In this paper, we measure how much the private key size 

can be reduced when we apply a pseudo-random number 

generator to Unbalanced Oil and Vinegar Signature (UOV) 

Scheme. We use a secure pseudorandom number generator 

for generation the private key. By this way we confirm that 

almost 93% of the private key size can be reduced. 

In subsection A from Section I, we describe the 

multivariate quadratic scheme. The most important part of 

the multivariate quadratic scheme is a central map. We have a 

description of UOV as a central map in Section II and also 

modified UOV can be found. We give a brief account of BBS 
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algorithm in Section III. In Section IV, we explain how to 

apply PRNG to UOV scheme detailedly and we give the 

result of a practical experiment in section V. In section VI, 

we make mention of consideration and conclude our paper in 

Section VII. 

Multivariate Quadratic Scheme 

Let F be a finite field and q be a number of elements of F. 

Let E be an extension of the ground field F. X  is a set of 

input variables where ||Xn   and Y is a set of output 

variables where ||Ym  . 

The main idea of the MQ scheme is mn FF  . Fig. 1 

shows a flow of the MQ scheme. QS ,  and T are a private 

keys of the MQ scheme and P is a public keys of this scheme.  

 

X =(x1,….xn)

Input x

X’

Y’

Output Y=(y1,…,ym)

Private: S

Private: Q

Private: T

Public:
P=(p1,…,pn)

 
Fig. 1. Flow of the MQ scheme. 

 

The main stream is occurred in the private key Q  and we 

call it a central map. S  and T are an affine transformation 

and they can be represented in the form of an invertible 

matrix nn
s FM  and a vector n

s Fv  ,i.e, we have 

ss vXMXS )( . 
tM  and tv  can also be shown like this over 

mmF  and mF [5]. To get the public key P, we use a 

composite function with the affine 

transformations nn FFS : , mm FFT :  and the central 

map mn FFQ : . Now the public key P can be represented 

in SQTP  . 

In the MQ Scheme, we define the polynomial 

vector ),...,( 1 mppP  . According to the polynomial vector, 

we have a form that denotes a i-th vector of the public key.  
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, , , ,i j k i j  and i are the coefficients of the equations (1) 

over F. The public key can also be expressed in matrix after 

graded lexicographical ordering. 

1) Encryption and Signature Verification. In the MQ 

scheme, encryption process and signature verification 

process are same because of using public key. We 

choose an input vector nFX  and therewith perform 

the polynomials (1). Then we can obtain an output vector 
mFY  which is treated as ciphertext or the original of 

the signature. 

2) Decryption and Signature Generation. For decryption 

and signature generation, we have to perform the inverse 

process of encryption and signature verification process 

with the private keys and a given
mFY  . The affine 

transformation S  and T can easily be inverted as long as 

we utilize the matrices, i.e, )(' 1

tT vYMY   . However 

the way how to invert the private key Q  depends on the 

structure of the central map. In section 2, we will discuss 

about obtaining pre-image of 'Y  in UOV scheme. 

 

II. THE UNBALANCED OIL AND VINEGAR SIGNATURE 

SCHEME 

In this section, we will give a description about UOV 

Scheme. The Oil and Vinegar Signature Scheme was 

proposed by J. Patarin in [6]. But it was broken by A. Kipnis 

and A. Shamir [7]. A Kipnis and J Patarin found that if we 

have significantly more “vinegar” unknowns that “oil” 

unknowns, then the attack of [7] does not work and the 

security of this more general scheme is still an open problem. 

A. Basic UOV Scheme 

Let K be a finite field. Let v be a number of vinegar 

variables and o be a number of oil variables. Let n be a total 

number of variables and set n = o + v.  

As appears by Fig. 1, X’ will be the input of the UOV 

scheme as an element of nK and Y’ will be the output of the 

UOV scheme as an element of oK , 

where }',...,'{' 1 nxxX  , }',...,'{' 1 oyyY  . The input variable 

set 'X  can be divided into two set which are vinegar variable 

set and oil variable set. Therefore we are able to present 

'X this way, }'',...,',',...,{' 11 vovv xxxxX  . We define o 

quadratic polynomials ')'( YXQ   by  

 

` (r) ` ` (r) ` (r)

, 0 ,

( ) , =1,...0
n

r ij j j j j

i v j i j v

y x r x x x r 
  
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It should be noted that there is no terms composed of only 

oil variables.  

The coefficients )()()( ,, r
i

r
ij

r
ij  , Kr )( are the private key 

of the UOV scheme. Private S, the other private key of the 

UOV scheme, can be presented in a linear invertible matrix. 

Because the private T is not needed for the security we don’t 

use it. As a result, we can get the public key of the UOV 

scheme by 

SQP                                  (3) 

 

Remark 1. Basically the MQ scheme needs two affine 

maps and one central map but in the UOV scheme the second 

affine map T is not needed for the security. So we have 

SQP    

1) Signature Generation. If we randomly choose the v 

unknowns of K, we could get a system of o linear 

equation in the o variables because there is no terms 

which are consist of only oil variables. Due to that, it is 

possible to compute the equations by Gaussian 

reductions. If there is no solution, we should try again 

with new random vinegar variable. After finding a 'X , 

we can get the signature by )'(1 XSX  . X  is the 

signature. 

2) Signature Verification. A signature X  is valid if and 

only if all public equation P is satisfied.  

B. Cyclic UOV Scheme 

Petzoldt A., Bulygin S. and Buchmann J suggested a new 

idea to reduce the public key size of multivariate 

cryptosystems by using a partially cyclic public key in [8]. 

They reduced the size of the public key by up to 83%.  

In this section we review that how the authors of [8] reduce 

the size of public key. 

The authors of [8] found the relation between the 

coefficients of the quadratic terms of P and Q after choosing 

private S which is a linear invertible matrix. 
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)(r

ijp and
)(' r

kly  are the coefficients of the quadratic terms in 

r-th polynomial of P and Q. The second equation in (4) is 

established owing to excluding oil terms and s which is 

shown in (5) is an element of an affine map S. 

Let L be the length of the non-zero quadratic terms in Q 

and L’ be the length of the quadratic terms in the public 

polynomials.  

 

vo
vv

L 

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nn
L             (6) 

 

The authors of [8] defined a matrix A which has L rows 

and L columns for the equation (5).  

 

A =  ijkl  (1  k  v, k  l  n for the rows, 1  i  v, 

i j n for the columns) 
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So (4) is represented by 

 

quadP quadQ A                     (8) 

 

where quadPand quadQ  are submatrices of the public 

key P matrix and private Q matrix. If the matrix A is 

invertible, quadQ  could be unique. Thus the equation (8) 

can be bijective. 

P =  

 

Q =  

 

L  
Fig. 2. Matrix layout of public key P and private key Q.  

 

Fig. 2 shows the matrix layout of public key P and private 

key Q. P and Q are matrices and each of them consists of the 

coefficients of the polynomials.(constant coefficients of each 

polynomial are not included) oilP is a submatrix of the P 

and it consists of the coefficients of the terms which are 

composed of oil variables. As we mentioned before, there are 

no oil terms are in the polynomial (2). linP and linQ are the 

linear coefficients of each polynomials. 

To insert a partially circulant matrix into the public key, 

the authors of [8] chose a vector L
RL Kbbb  ),,,,( 1 for an 

anchor of the public key and shifted a vector  b  by  

)(1)( bSv ii

P

    oi ,...,1                (9) 

where )(bS i is the circular right shift of the vector b  by i-th 

positions. 

In this manner, they could reduce the size of the UOV 

scheme public key.  

 

III. THE BLUM BLUM SHUB GENERATOR 

The Blum-Blum-Shub(BBS) pseudorandom generator is a 

very simple and strongly secure pseudorandom generator 

based on the hardness of integer factoring[8][9]. Let Blum 

prime number is a prime number p with )4(mod3p . Let m 

is a product of two big Blum prime numbers p and q. Choose 

the random seed s where ]1,1[  ms R
. Then we can get the 

initial value 0x  by  

)(mod2

0 msx                         (10) 

Then we can define the sequence. 

 

                           
2

1 (mod )i ix x m                      (11) 

 

Even parity bit, odd parity bit or least significant bit can be 

the output of the Blum Blum Shub pseudorandom generator. 

In our paper, we use the least significant bit. 
 

Algorithm 1: The BBS algorithm 

 

:   Input s  

2

2

1

2

mod  

 0,...

   mod  

    mod  2

   2

 

i i

i

x s m

for i do

x x m

b x

b b b

end for











  

 

:Output b  

 

Alg. 1 shows the BBS algorithm. The input s is a random 

seed and the output b is a random value which is composed of 

a series of the random bits. For example, let p = 31, q = 23 

and s = 4. Then the BBS generator creates the sequence 

8321 ,,,, xxxx  = 16, 256, 653, 35, 512, 473, 560, 593. 

Therefore the random bits are 0, 1, 1, 0, 1, 0, 1, 0 and the 

output is 86. 

 

IV. UOV SCHEME WITH PRNG 

As we explained in Section I, reducing the key size is a hot 

research topic. If the UOV scheme is applied to the practical 

networks, because all clients must have the private key for 

generating a signature basically, reducing the private key size 

would be very important. We generate the private key by 

BBS pseudorandom generator which is considered as a 

secure pseudorandom number generator [9]. 

In this section, we explain how to apply PRNG to the UOV 

scheme. 

A. Construction 

Let K be a finite field. Let v be a number of the vinegar 

variables and o be a number of the oil variables. Let p and q 

are Blum prime numbers. Let n be a total number of variables 

and set n = o + v. 

We denote 12/))1((  nvovvu  and 

qpm * . Alg. 1(PrKG, Private Key Generation) is used 

in generating a private key. Now we can generate the private 

key by 

 

)(Pr ,1, jiji qKGq   ,1( oi  )1 uj      (12) 

We are able to get an initial value 1,1q  by 

                        )(Pr1,1 rKGq                          (13) 

   quadQ linQ0

   quadP oilP linP
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where ]1,1[  mr R  is a random seed.  

Now we are able to construct matrix Q as the private key 

by virtue of (12).  

 

11 12 1

21 22 2

1 2

u

u

O O OU

q q q

q q q

q q q

 
 
 
 
 
  

Q





 



                 (14) 

 

Also, we can obtain quadQ  and linQ . We denote 

]|[ oilPquadPH  . Because there is no correlation between 

H  and linP, we can get the public key respectively[4]. To 

obtain H , we define a matrix '' LXLKA like (7). 

A’ =  ijkl  (1 k v, k l n for the rows, 1 i j n for 

the columns) 
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             (15) 

 

We can easily get H  by 

 

'H quadQ A                   (16) 

 

linP is also simply computed due to having the same 

dimension between linQ  and affine map S.  

 

SlinQlinP                   (17) 

 

The public key will be ]|[ linPHP   

B. Key Generation Procedure 

1) Compute the ', LL and u . 

2) Generate the oXu  matrix Q  as the private key 

following (12) 

3) Obtain quadQ  and linQ . 

4) Choose an n n  affine matrix S at random over the 

field. If it is note invertible, choose again. 

5) Compute a 'LXL matrix 'A  following (15). 

6) Compute H  and linPfollowing (16) and (17). 

7) Obtain the public key by ]|[ linPHP  . 

 Signature Generation. The private key generation process 

is required prior to sign the message. The signature 

generation procedure is almost same with the basic UOV’s 

in subsection 2.1 except adding the private key generation 

process.  

 Signature Verification. There is no difference with the 

basic UOV’s in subsection 2.1. 

Key Size. Let )2( mGFK  . The public key size 

is byte
mnLo

8

)1'( 
, and the size of the private key is 

only byte
mnn

8

)3( 2 
 

3  is come from ba, and r in (11) and (12). nn 2 is for 

the affine map S. 

 

V. PRACTICAL EXPERIMENT 

We compute the key size in each scheme following 

presented (o, v) in the Table I. We assume )2( 8GFK  . In 

[8], the basic UOV scheme with o=24, v=48 is considered to 

be secure. Therefore we begin with o=25, v=50. Table I 

shows the result of the measurement. In the UOV scheme 

with a PRNG, the private key size was reduced 94.79%.  

 
TABLE I: AVERAGE REDUCTION RATE IN EACH SCHEME 

(o,v) Key size(kB) Basic UOV 
UOV 

(PRNG) 

(25,50) Public key size 73.15 73.15 

 Private key size 70.72 5.70 

(30,60) Public key size 125.58 125.58 

 Private key size 119.82 8.19 

(35,70) Public key size 198.49 198.49 

 Private key size 187.57 11.13 

(40,80) Public key size 295.24 295.24 

 Private key size 276.96 14.52 

(45,90) Public key size 419.22 419.22 

 Private key size 391.01 18.36 

(50,100) Public key size 573.80 573.80 

 Private key size 532.70 22.65 

(55,110) Public key size 762.36 762.36 

 Private key size 705.05 27.93 

(60,120) Public key size 988.26 988.26 

 Private key size 911.04 32.58 

Average 

Reduction 

rate(%) 

Public key size - - 

Private key 

size 
- 94.79 

 

The average reduction rate will go up if the sizes of o and v 

are longer than before (Fig. 3 and Fig. 4). 

 

 
Fig. 3. This figure shows change of the public key and private key size rate 

on increasing a number of the oil variables. The x-axis is a number of the oil 

variables and the y-axis is the key size(kB). 



  

     
Fig. 4. This figure shows change of the reduction rate on increasing a number 

of the oil variables. The x-axis is a number of the oil variables and the y-axis 

is the reduction rate (%). 

 

VI. CONSIDERATION 

By the practical experiments, we got to know almost 95% 

of the private key memory can be saved. However, although 

the reduction rate for saving a memory is wonderful, a 

fundamental problem is still remained. Because when we 

make a signature for certain data, we have to generate a 

private key. And a necessary memory size is the same as 

before. If we generate both the private key and the signature 

on the fly, we can save the memory as much as we expected. 

 

VII. CONCLUSION 

In this paper, we reviewed the multivariate quadratic 

schemes such as the basic UOV scheme and the cyclic UOV 

scheme. And we applied BBS generator to the UOV scheme 

and measured that how much a private key memory size can 

be reduced. We confirmed that 94.79% of the private key 

memory size was saved.  

However, there is still problem. We saved the memory but 

the private key size was not changed. Therefore our next 

research topic is adapting a PRNG which generate the private 

key on the fly for UOV scheme. We expect our study could 

contribute to solve the key size issue in MQ scheme. 
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