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 

Abstract—In this paper, we revisit the previous 

multi-precision multiplication techniques including 

“operand-scanning”, “hybrid-scanning”, “operand-caching”, 

“consecutive operand-caching” and “product-scanning.” 

Particularly, the former four methods execute an intermediate 

result computation which is process for updating the results 

with a newly computed result by computing a number of 

addition operations. This operations is expensive, so efficient 

implementation is required to boost the performance. For this 

reason, we propose a novel method, i.e., “Carry-Once”, which 

reduces the number of intermediate result computation by size 

of result accumulation. The main idea is gathering carry values 

and updating the values at once. This method improves all 

multi-precision multiplication techniques having intermediate 

result computation and show performance enhancement in 

terms of speed by up to 2.5%, compared with best known 

results. 

 

Index Terms—Multi-precision multiplication, public-key 

cryptography, carry-once method, embedded microprocessors. 

 

I. INTRODUCTION 

Public key cryptography methods such as RSA [1], ECC 

[2], and pairing [3] involve computation-intensive arithmetic 

operations; in particular, multiplication accounts for most of 

the execution time of microprocessors. Several technologies 

have been proposed to reduce the execution time and 

computation cost by decreasing the number of clock cycles. 

A row-wise method called “operand scanning” is used for 

short looped programs. This method loads all operands in a 

row. 

The alternative Comba method is a common schoolbook 

method that is also known as the “product scanning method.” 

This method computes all partial products in a column [4]. 

The “hybrid scanning” combines the useful features of 

operand scanning and product scanning. By adjusting row 

and column width, the number of operand accesses and result 

updates are reduced. This method has an advantage over a 

microprocessor equipped with many general purpose 

registers [5]. At CHES’11, the “operand caching” was 

proposed [6]. This method significantly reduces the number 

of load operations, which are regarded as expensive 

operations, via caching of operands.  

At WISA'12, the “consecutive operand caching” was 

proposed [7] which enhances previous “operand caching” 

with fully caching required operands, so it does not reload 

operands throughout the computations. 
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Previous multi-precision multiplication methods were 

paying more attention on reducing the expensive memory 

access. However, multiplication also spends a number of 

clock cycles for accumulation of intermediate result value. 

In this paper, we propose a novel multiplication method 

that highly optimizes the number of addition instructions 

required for intermediate result update. The remainder of this 

paper is organized as follows. In Section II, we describe 

previous multi-precision multiplication techniques and in 

Section III, we introduce a novel intermediate result update 

method, “Carry-Once.” In Section IV, we describe the 

performance evaluation in terms of number of addition 

instructions. Finally, Section V concludes the paper. 

 

II. MULTI-PRECISION MULTIPLICATION TECHNIQUES 

In this section, we introduce various multi-precision 

multiplication techniques, including “operand-scanning”, 

“hybrid-scanning”, “operand-caching”, “consecutive 

operand-caching” and “product-scanning.” 

Each method has unique features for reducing the number 

of load and store instructions, and they have similar 

intermediate result update process which reloads 

intermediate results and accumulates them with newly 

computed result in the column except “product-scanning.”  

This operation is expensive, so efficient implementation is 

important for high performance. To enhance the performance, 

we present an advanced intermediate result update method, 

“Carry-Once” which reduces the number of required addition 

instructions. This method is described with multiplication 

method. 

 

 
                         (a)                                           (b) 

 
(c)                                           (d) 

Fig. 1. Multi-precision multiplication techniques. (a)operand-scanning. 

(b)hybrid-scanning. (c)operand-caching. (d)consecutive operand-caching [6], 

[9]. 

 

To describe the multi-precision multiplication method, we 

use the following notations. Let A and B be two m-bit 

operands that are multiple-word arrays. Each operand is 

written as follows: A=(A [n-1],...,A [2],A [1],A [0]) and B=(B 

[n-1],...,B[2], B [1], B [0]). The division of operand-size (m) 
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by word-size (w) represents the number of elements (n) in the 

operand array. The result of multiplication is twice as large as 

operand C=(C [2n-1]... C [2], C [1], C [0]). 

For clarity, we describe the method using a multiplication 

structure and rhombus form, as shown in Fig. 1. Each point 

represents a multiplication A[i] × B[j]. The rightmost corner 

of the rhombus represents the lowest indices (i, j=0), whereas 

the leftmost represents corner the highest indices (i, j=n-1). 

The lowermost side represents result indices C[k], which 

ranges from the rightmost corner (k=0) to the leftmost corner 

(k=2n-1). 

A. Operand-Scanning Method 

This method consists of two parts, i.e., inner and outer 

loops. In the inner loop, operand A[i] holds a value and 

computes the partial products with all multiple values of the 

multiplicand B[j] (j=0...n-1). In the outer loop, the index of 

operand A[i] increases by a word-size and then the inner loop 

is executed. Fig. 1 (a) shows the “operand-scanning” method. 

The arrows indicate the order of computations which are 

executed from the rightmost corner to the leftmost corner.  

B. Hybrid-Scanning Method 

This method combines the useful features of “operand 

scanning” and “product-scanning” [5]. Multiplication is 

performed on a block scale using “product scanning.” The 

number of rows within the block is defined as d and inner 

block partial products follow the “operand-scanning” rule. 

Therefore, this method reduces the number of load 

instructions by sharing the operands within the block. As the 

number of available registers increases, the size of row (d) 

increases and, the number of memory accesses is reduced by 

the number of shared operands. Fig. 1 (b) shows the “hybrid” 

method in the case of (d=4). 

C. Operand-Caching Method 

This method follows the “product-scanning” method, but it 

divides the calculation into several row sections [6]. By 

reordering the sequences of inner and outer row sections, 

previously loaded operands in working registers are reused 

for the next partial products. Although a few store 

instructions are added, but the number of required load 

instruction is reduced. The number of row section is given 

by  n/er   , and e denotes the number of words used to 

cache digit in the operand. Fig. 1 (c) shows the “operand 

caching” method in the case of (e=3). Given n=8, the number 

of row section is 8/3 2r   . 

D. Consecutive-Operand-Caching Method 

This method is based on “operand-caching”, so it can 

perform multiplication with reduced number of memory 

accesses for operand load instructions by caching operands. 

However, previous method has to reload operands whenever 

a row is changed, which generates unnecessary overheads. 

To overcome these shortcomings, this method divided the 

rows and re-scheduled the multiplication sequences to find a 

contact point among rows that share the common operands 

for partial products. This method can cache the operands, 

when a row is changed. A detailed example is shown in Fig. 1 

(d). The size of the caching operand e and the number of 

elements n are set to 2 and 8, respectively. The value e is 

determined by the number of working registers in the 

platform. The number of rows is r=4, following the 

notation  n/er  . Given the number of working registers w, 

the value is w=3+2e. Three working registers are used for 

accumulating the intermediate results obtained from the 

partial products. 

E. Product-Scanning Method 

The “product-scanning” method is not efficiently 

computed with “Carry-Once” method, so we don't describe 

the method in main contents. 

 

III. PROPOSED METHOD 

In the section, we present a novel method, “Carry-Once” 

method for multi-precision multiplication having 

accumulation of intermediate results. Firstly, we provide 

main idea of “Carry-Once” method and then apply the 

method to previous multiplication techniques including 

“Operand-Scanning”, “Hybrid-Scanning”, 

“Operand-Caching” and “Consecutive Operand-Caching.”  

 

 
(a)                                                    (b) 

Fig. 2. Carry-once method, R, I, C represent computed result, reloaded 

intermediate result and result of memory, respectively. 

A. Carry-Once Method 

The idea of “Carry-Once” is gathering the intermediate 

results and updating the values at once. Fig. 2 describes 

“Carry-Once” in detail. The case (a) is normal 

implementation of carry operation, in which computed three 

result values (R0, R1, R2) are updated with intermediate result 

I1 and least result (R0) is stored into memory C0 directly. 

Therefore, intermediate result  is added to R1 and carry of 

previous addition is added to R2. In the next step, same 

process is conducted after one word size shifted to the left. 

Finally, four addition operations are required for case (a). 

Case (b) describes “Carry Once”, in which updating results 

(R0, R1, R2) with intermediate results are not computed at the 

first process. In next step, intermediate results (I1, I2) are 

updated with result values (R0, R1, R2) at once. Therefore, 

case (b) updates intermediate results with three addition 

operations and this uses one less addition operation than 

normal technique. The advantage of method is computed 

with following equations. Let i, s, and b be size of computed 

result, reloaded intermediate result, and block (  i/s ). 

If   i/si/s  , the advantage is (s-1) × b = sb-b in a row. 

If   i/si/s  , the advantage is (s-1) × b+ (i-bs-1) =i-b-1. 
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Following sections present detailed flow of multiplication. 

B. Multi-Precision Multiplication with Carry-Once 

Method 

In the section, we introduce practical usages of 

“Carry-Once” for previous multi-precision multiplication 

methods. The used parameters, n and c are set to 8 and 2 

respectively. 

1) Operand-Scanning Method: “Operand-scanning” is 

described in Fig. 3 (a) and red dots represent 

intermediate result computations. This method contains 

numerous computations. From second row to last row, 

all result values are influenced by previous computed 

results. By reducing the number of computations with 

“Carry-Once” we can expect high performance. The 

number of intermediate result is 
2( 1)n n n   . And 

required number of addition is double number of 

intermediate result, 
22( )n n .  

2) Hybrid-Scanning Method: “Hybrid-scanning” is 

described in Fig. 3 (b). In the example, d is defined as 

four and process is separated into four 

sub-multiplications. Block No. 1 does not have 

duplicated part with previous computation, so we don't 

need to compute intermediate results. From block No. 2 

to 4, update processes are conducted. Particularly, Block 

No. 2 and 4 compute intermediate result with half size of 

row, because remaining half parts don't have previously 

computed results. Let number of sub-block be q=n/d (n 

is divisible by d). The number of intermediate 

computation is determined by size of row d and its cost is 

(q-1) (2dq+q+1). Required number of addition is 2(q-1) 

(2dq+q+1). 

3) Operand-Caching Method: “Operand-caching” is shown 

in Fig. 3 (c). In the example e is a size of caching 

operand and the number of row is  n/e . The 

computation is executed from binit to last row r1. In the 

row computations, intermediate result computation is 

executed to update previous intermediate results. The 

cost of operation is determined by parameter n and e, 

because the parameters determine the size of rows and 

number of rows. If condition is   n/en/e  , the number 

of operation is 
2

1 2 ( 1)r

k e k r e re      and 

addition is 
22( )r e re  Otherwise, the number of 

operation is 
2

12( ) 2 ( 1 =2r

kn er r e k nr r e re    ） and 

addition is 
22(2 )nr r e re    

4) Consecutive Operand-Caching Method: “Consecutive 

operand-caching” is shown in Fig. 3 (d). In the example 

e is a size of caching operand. The process has similar 

structure of “operand-caching.” Therefore, similarly the 

cost of the operation is determined by parameter n and e. 

If condition is   n/en/e  , the number of operation is 

nr+re-2n; addition is 2nr+2re-4n. Otherwise, the 

number of operation is nr+re-n+e, addition is 

2(nr+re-n+e). 

 
(a)                                           (b) 

 
(c)                                           (d) 

Fig. 3. Intermediate result computation of multi-precision multiplications. 

(a)operand-scanning. (b)hybrid-scanning. (c)operand-caching. 

(d)consecutive operand-caching [6], [9]. 

 

IV. RESULT 

In this section, we show the complexity of proposed 

intermediate result computation and estimated result over 

8-bit microprocessor depending on different parameters 

including size of element and caching registers. 

A. Complexity of Proposed Method 

Fig. 4 shows performance enhancement of proposed 

method. The graph represents reduced complexity compared 

with basic implementation which doesn't use optimization 

techniques. By increasing size of “carry once (Y-axis),” the 

number of intermediate operation is reduced in case of 

operand scanning and hybrid scanning. Otherwise, 

“(Consecutive) operand caching,” we set size of “carry-once” 

to 2 and adjust a size of caching operands (Y-axis). In the 

both graphs, X-axis represents size of multiplication. 

 

 
(a)                                           (b) 

 
(c)                                           (d) 

Fig. 4. Performance enhancement of proposed method in carry addition 

method(Proposed/Basic). (a)operand-scanning. (b)hybrid-scanning. 

(c)operand-caching. (d)consecutive operand-caching. 

 

1) Operand-Caching: “Operand scanning” is suitable 

structure for adopting proposed method. Therefore, 

performance enhancement is significantly higher than 

any other methods. The following equation is cost for 

intermediate update process. ( 1)( )
n

n n
c

   The 

cost is highly relied on size of Carry-Once, c so the cost 

is reduced by increasing the size c. 
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2) Hybrid-Scanning: “Hybrid scanning” is determined by 

width of column (d) which sets size of caching operands. 

As the width of column increases, longer size of 

Carry-Once is possible, so performance increases 

together with d. The cost of intermediate reload is 

determined by following conditions. If condition is 

d+1>c, the number of operation is 

2+1 2 +1
2( -1) + + 2 + ( -1) + 2 + 2

d d
w d w d

c c

      
      
      

 

If condition is 2 +1> > +1d c d , the number of 

operation is 

2 2 +1
2( -1)( +1) + ( -1) + 2 + 2

d
w d w d

c

  
  
  

. If 

condition is >2 +1c d  the number of operation is 

22( -1)( +1) + ( -1) (2 +1)w d w d  

3) Operand-Scanning: In “operand-caching,” the size of 

“carry-once” is set to value two, because 

“operand-caching” uses a number of registers for 

retaining operands, so size is restricted to two. The 

performance is higher when n is divisible with e and e is 

even, because it perfectly suits to size of “carry-once.” 

The cost is determined by characteristic of divisibility 

and even. If condition is / = /n e n e    and e is odd, the 

number of operation is 

-1

=1

3 3
2( 2(e -1) + 2( -1)) = ( -1) ( -1) + 4( -1).

2 2

r

k
k r e r r r   If 

condition is   n/en/e   and e is even, the number of 

operation is 
-1

=1

3 3
2 = ( -1) ( -1).

2 2

r

k
ek e r r

 
 
 
 If 

condition is   n/en/e   and e is odd, the number of 

operation is 
-1

=1

3
2(( - ) + (e -1) ) + 2( -1)) =

2

r

k
n re r k r  

3
2((2( - ) + ( -1)( -1)) + 2( -1)).

4
n re r r r e r  

4) If condition is   n/en/e   and e is even, the number of 

operation is  

-1

=1

3
3(( - ) + = 3 ( - ) + ( -1)

2

r

k
n re r ek r n re er r  

5) Consecutive Operand-Caching: In “consecutive operand 

caching,” cost of intermediate reload is determined with 

same conditions of “operand caching.” This method 

shows much more obvious contrasts between 

characteristic of e, whether it is odd or even number, 

because even number divides number of element 

completely. If condition is   n/en/e   and e is odd, the 

number of operation is 

3 3
2 ( -1) + ( + -1)( - 2) + ( - 2) .

2 4
e n e r r

 
 
 

 If condition 

is   n/en/e   and e is even, the number of operation is 

3 3
2 + 2 + ( + )( - 2) .

2 4
e n e r

 
 
 

 If condition is / /n e n e    and e 

is odd, the number of operation is 

3 3
2 ( -1) + 2 + ( + -1)( -1) + ( -1) .

2 4
e n e r r

 
 
 

If 

condition is   n/en/e   and e is even, the number of 

operation is 
3 3

2 + ( + )( -1) .
2 4

e n e r
 
 
 

 

 

 
(a)                                           (b) 

 

 
(c)                                           (d) 

Fig. 5. Implementation result over 8-bit microprocessor(Proposed / Previous). 

(a)Operand-Caching. (b)Consecutive Operand-Caching. The number of 

reduced cost of intermediate result computation. (c)Operand-Caching. 

(d)Consecutive Operand-Caching. 

B. Evaluation Result with Embedded Microprocessors 

We implemented 160-bit multiplication over ATmega128. 

Our method shows better results in all multiplication methods 

compared with best known results. The detailed instruction 

counts are available in Table I.  

 
TABLE I: INSTRUCTION COUNTS FOR A 160-BIT MULTIPLICATION ON THE 

ATMEGA128 

Method Load Store Mul Add Others Total 

Hybrid-Scanning 

Gura [5] 167 40 400 1,360 552 3,106 

Uhsadel[8] 238 40 400 986 539 2,881 

Scott[9] 200 40 400 1,263 108 2,651 

Liu[10] 200 40 400 1,194 391 2,865 

This Paper 168 40 400 1,336 79 2,629 

Operand-Caching 

Michael[6] 80 60 400 1,240 70 2,395 

This Paper 70 60 400 1,230 70 2,365 

Consecutive Operand-Caching 

Seo[7] 70 60 400 1,240 56 2,356 

This Paper 70 60 400 1,230 56 2,346 

 

The “(Consecutive) Operand Caching” methods show best 

results in microprocessor, so we evaluate the methods with 

various sizes of bit. The detailed latency of “Operand 

Caching” and “Consecutive Operand Caching” is described 

in Table II. For clarity, we provide performance comparison 

between previous and proposed methods in Fig. 5 (a) and (b). 

The enhancement is measured from 0.5 % to 2.5 %. These 

features are generated with advantages from reduced number 

of intermediate result computation and detailed information 

is described in Fig. 5 (c) and (d). 
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TABLE II: CONSECUTIVE OPERAND-CACHING MULTIPLICATION RESULTS 

USING PROPOSED METHOD WITH DIFFERENT PARAMETERS 

Operand Caching 

Size e=2 e=4 e=8 e=10 

160 3,821 2,917 2,507 2,365 

192 5,475 4,187 3,537 3,467 

256 9,671 7,411 6,275 6,115 

512 38,295 29,427 24,987 24,171 

1024 152,375 117,235 99,659 96,125 

2048 607,863 467,955 397,995 383,471 

Consecutive Operand Caching 

Size e=2 e=4 e=8 e=10 

160 3,674 2,838 2,472 2,346 

192 5,296 4,088 3,490 3,437 

256 9,428 7,272 6,200 6,128 

512 37,796 29,128 24,800 24,205 

1024 151,364 116,616 99,248 95,975 

2048 605,828 466,696 397,136 384,058 

 

V. CONCLUSION 

The previous best known method reduced the number of 

memory accesses efficiently. However intermediate result 

computation is also expensive operation for multi-precision 

multiplication, so we focused more on intermediate result 

process. Improvement of the process enhances performance 

of ordinary multi-precision multiplications excluding 

“product-scanning”, so the method affects wide range of 

multiplication methods. In this paper, we presented a novel 

method, i.e., “carry-once”, for intermediate result 

computation of multi-precision multiplication. This method 

efficiently reduces an instruction counts by gathering several 

carry values and updating the values at once. This is 

efficiently implemented and show higher performance than 

previous result by up to 2.5 %. 
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