

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

255DOI: 10.7763/IJCCE.2013.V2.183



Abstract—In this paper, we revisit the previous

multi-precision multiplication techniques including

“operand-scanning”, “hybrid-scanning”, “operand-caching”,

“consecutive operand-caching” and “product-scanning.”

Particularly, the former four methods execute an intermediate

result computation which is process for updating the results

with a newly computed result by computing a number of

addition operations. This operations is expensive, so efficient

implementation is required to boost the performance. For this

reason, we propose a novel method, i.e., “Carry-Once”, which

reduces the number of intermediate result computation by size

of result accumulation. The main idea is gathering carry values

and updating the values at once. This method improves all

multi-precision multiplication techniques having intermediate

result computation and show performance enhancement in

terms of speed by up to 2.5%, compared with best known

results.

Index Terms—Multi-precision multiplication, public-key

cryptography, carry-once method, embedded microprocessors.

I. INTRODUCTION

Public key cryptography methods such as RSA [1], ECC

[2], and pairing [3] involve computation-intensive arithmetic

operations; in particular, multiplication accounts for most of

the execution time of microprocessors. Several technologies

have been proposed to reduce the execution time and

computation cost by decreasing the number of clock cycles.

A row-wise method called “operand scanning” is used for

short looped programs. This method loads all operands in a

row.

The alternative Comba method is a common schoolbook

method that is also known as the “product scanning method.”

This method computes all partial products in a column [4].

The “hybrid scanning” combines the useful features of

operand scanning and product scanning. By adjusting row

and column width, the number of operand accesses and result

updates are reduced. This method has an advantage over a

microprocessor equipped with many general purpose

registers [5]. At CHES’11, the “operand caching” was

proposed [6]. This method significantly reduces the number

of load operations, which are regarded as expensive

operations, via caching of operands.

At WISA'12, the “consecutive operand caching” was

proposed [7] which enhances previous “operand caching”

with fully caching required operands, so it does not reload

operands throughout the computations.

Manuscript received November 4, 2012; revised January 18, 2013.

The authors are with the Department of Computer Engineering, Pusan

National University, South Korea (e-mail: hwajeong@pusan.ac.kr,

howonkim@pusan.ac.kr).

Previous multi-precision multiplication methods were

paying more attention on reducing the expensive memory

access. However, multiplication also spends a number of

clock cycles for accumulation of intermediate result value.

In this paper, we propose a novel multiplication method

that highly optimizes the number of addition instructions

required for intermediate result update. The remainder of this

paper is organized as follows. In Section II, we describe

previous multi-precision multiplication techniques and in

Section III, we introduce a novel intermediate result update

method, “Carry-Once.” In Section IV, we describe the

performance evaluation in terms of number of addition

instructions. Finally, Section V concludes the paper.

II. MULTI-PRECISION MULTIPLICATION TECHNIQUES

In this section, we introduce various multi-precision

multiplication techniques, including “operand-scanning”,

“hybrid-scanning”, “operand-caching”, “consecutive

operand-caching” and “product-scanning.”

Each method has unique features for reducing the number

of load and store instructions, and they have similar

intermediate result update process which reloads

intermediate results and accumulates them with newly

computed result in the column except “product-scanning.”

This operation is expensive, so efficient implementation is

important for high performance. To enhance the performance,

we present an advanced intermediate result update method,

“Carry-Once” which reduces the number of required addition

instructions. This method is described with multiplication

method.

 (a) (b)

(c) (d)

Fig. 1. Multi-precision multiplication techniques. (a)operand-scanning.

(b)hybrid-scanning. (c)operand-caching. (d)consecutive operand-caching [6],

[9].

To describe the multi-precision multiplication method, we

use the following notations. Let A and B be two m-bit

operands that are multiple-word arrays. Each operand is

written as follows: A=(A [n-1],...,A [2],A [1],A [0]) and B=(B

[n-1],...,B[2], B [1], B [0]). The division of operand-size (m)

Optimized Multi-Precision Multiplication for Public-Key

Cryptography on Embedded Microprocessors

Hwajeong Seo and Howon Kim

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

256

by word-size (w) represents the number of elements (n) in the

operand array. The result of multiplication is twice as large as

operand C=(C [2n-1]... C [2], C [1], C [0]).

For clarity, we describe the method using a multiplication

structure and rhombus form, as shown in Fig. 1. Each point

represents a multiplication A[i] × B[j]. The rightmost corner

of the rhombus represents the lowest indices (i, j=0), whereas

the leftmost represents corner the highest indices (i, j=n-1).

The lowermost side represents result indices C[k], which

ranges from the rightmost corner (k=0) to the leftmost corner

(k=2n-1).

A. Operand-Scanning Method

This method consists of two parts, i.e., inner and outer

loops. In the inner loop, operand A[i] holds a value and

computes the partial products with all multiple values of the

multiplicand B[j] (j=0...n-1). In the outer loop, the index of

operand A[i] increases by a word-size and then the inner loop

is executed. Fig. 1 (a) shows the “operand-scanning” method.

The arrows indicate the order of computations which are

executed from the rightmost corner to the leftmost corner.

B. Hybrid-Scanning Method

This method combines the useful features of “operand

scanning” and “product-scanning” [5]. Multiplication is

performed on a block scale using “product scanning.” The

number of rows within the block is defined as d and inner

block partial products follow the “operand-scanning” rule.

Therefore, this method reduces the number of load

instructions by sharing the operands within the block. As the

number of available registers increases, the size of row (d)

increases and, the number of memory accesses is reduced by

the number of shared operands. Fig. 1 (b) shows the “hybrid”

method in the case of (d=4).

C. Operand-Caching Method

This method follows the “product-scanning” method, but it

divides the calculation into several row sections [6]. By

reordering the sequences of inner and outer row sections,

previously loaded operands in working registers are reused

for the next partial products. Although a few store

instructions are added, but the number of required load

instruction is reduced. The number of row section is given

by  n/er  , and e denotes the number of words used to

cache digit in the operand. Fig. 1 (c) shows the “operand

caching” method in the case of (e=3). Given n=8, the number

of row section is 8/3 2r   .

D. Consecutive-Operand-Caching Method

This method is based on “operand-caching”, so it can

perform multiplication with reduced number of memory

accesses for operand load instructions by caching operands.

However, previous method has to reload operands whenever

a row is changed, which generates unnecessary overheads.

To overcome these shortcomings, this method divided the

rows and re-scheduled the multiplication sequences to find a

contact point among rows that share the common operands

for partial products. This method can cache the operands,

when a row is changed. A detailed example is shown in Fig. 1

(d). The size of the caching operand e and the number of

elements n are set to 2 and 8, respectively. The value e is

determined by the number of working registers in the

platform. The number of rows is r=4, following the

notation  n/er  . Given the number of working registers w,

the value is w=3+2e. Three working registers are used for

accumulating the intermediate results obtained from the

partial products.

E. Product-Scanning Method

The “product-scanning” method is not efficiently

computed with “Carry-Once” method, so we don't describe

the method in main contents.

III. PROPOSED METHOD

In the section, we present a novel method, “Carry-Once”

method for multi-precision multiplication having

accumulation of intermediate results. Firstly, we provide

main idea of “Carry-Once” method and then apply the

method to previous multiplication techniques including

“Operand-Scanning”, “Hybrid-Scanning”,

“Operand-Caching” and “Consecutive Operand-Caching.”

(a) (b)

Fig. 2. Carry-once method, R, I, C represent computed result, reloaded

intermediate result and result of memory, respectively.

A. Carry-Once Method

The idea of “Carry-Once” is gathering the intermediate

results and updating the values at once. Fig. 2 describes

“Carry-Once” in detail. The case (a) is normal

implementation of carry operation, in which computed three

result values (R0, R1, R2) are updated with intermediate result

I1 and least result (R0) is stored into memory C0 directly.

Therefore, intermediate result is added to R1 and carry of

previous addition is added to R2. In the next step, same

process is conducted after one word size shifted to the left.

Finally, four addition operations are required for case (a).

Case (b) describes “Carry Once”, in which updating results

(R0, R1, R2) with intermediate results are not computed at the

first process. In next step, intermediate results (I1, I2) are

updated with result values (R0, R1, R2) at once. Therefore,

case (b) updates intermediate results with three addition

operations and this uses one less addition operation than

normal technique. The advantage of method is computed

with following equations. Let i, s, and b be size of computed

result, reloaded intermediate result, and block ( i/s).

If   i/si/s  , the advantage is (s-1) × b = sb-b in a row.

If   i/si/s  , the advantage is (s-1) × b+ (i-bs-1) =i-b-1.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

257

Following sections present detailed flow of multiplication.

B. Multi-Precision Multiplication with Carry-Once

Method

In the section, we introduce practical usages of

“Carry-Once” for previous multi-precision multiplication

methods. The used parameters, n and c are set to 8 and 2

respectively.

1) Operand-Scanning Method: “Operand-scanning” is

described in Fig. 3 (a) and red dots represent

intermediate result computations. This method contains

numerous computations. From second row to last row,

all result values are influenced by previous computed

results. By reducing the number of computations with

“Carry-Once” we can expect high performance. The

number of intermediate result is
2(1)n n n  . And

required number of addition is double number of

intermediate result,
22()n n .

2) Hybrid-Scanning Method: “Hybrid-scanning” is

described in Fig. 3 (b). In the example, d is defined as

four and process is separated into four

sub-multiplications. Block No. 1 does not have

duplicated part with previous computation, so we don't

need to compute intermediate results. From block No. 2

to 4, update processes are conducted. Particularly, Block

No. 2 and 4 compute intermediate result with half size of

row, because remaining half parts don't have previously

computed results. Let number of sub-block be q=n/d (n

is divisible by d). The number of intermediate

computation is determined by size of row d and its cost is

(q-1) (2dq+q+1). Required number of addition is 2(q-1)

(2dq+q+1).

3) Operand-Caching Method: “Operand-caching” is shown

in Fig. 3 (c). In the example e is a size of caching

operand and the number of row is  n/e . The

computation is executed from binit to last row r1. In the

row computations, intermediate result computation is

executed to update previous intermediate results. The

cost of operation is determined by parameter n and e,

because the parameters determine the size of rows and

number of rows. If condition is   n/en/e  , the number

of operation is
2

1 2 (1)r

k e k r e re    and

addition is
22()r e re Otherwise, the number of

operation is
2

12() 2 (1 =2r

kn er r e k nr r e re    ） and

addition is
22(2)nr r e re 

4) Consecutive Operand-Caching Method: “Consecutive

operand-caching” is shown in Fig. 3 (d). In the example

e is a size of caching operand. The process has similar

structure of “operand-caching.” Therefore, similarly the

cost of the operation is determined by parameter n and e.

If condition is   n/en/e  , the number of operation is

nr+re-2n; addition is 2nr+2re-4n. Otherwise, the

number of operation is nr+re-n+e, addition is

2(nr+re-n+e).

(a) (b)

(c) (d)

Fig. 3. Intermediate result computation of multi-precision multiplications.

(a)operand-scanning. (b)hybrid-scanning. (c)operand-caching.

(d)consecutive operand-caching [6], [9].

IV. RESULT

In this section, we show the complexity of proposed

intermediate result computation and estimated result over

8-bit microprocessor depending on different parameters

including size of element and caching registers.

A. Complexity of Proposed Method

Fig. 4 shows performance enhancement of proposed

method. The graph represents reduced complexity compared

with basic implementation which doesn't use optimization

techniques. By increasing size of “carry once (Y-axis),” the

number of intermediate operation is reduced in case of

operand scanning and hybrid scanning. Otherwise,

“(Consecutive) operand caching,” we set size of “carry-once”

to 2 and adjust a size of caching operands (Y-axis). In the

both graphs, X-axis represents size of multiplication.

(a) (b)

(c) (d)

Fig. 4. Performance enhancement of proposed method in carry addition

method(Proposed/Basic). (a)operand-scanning. (b)hybrid-scanning.

(c)operand-caching. (d)consecutive operand-caching.

1) Operand-Caching: “Operand scanning” is suitable

structure for adopting proposed method. Therefore,

performance enhancement is significantly higher than

any other methods. The following equation is cost for

intermediate update process. (1)()
n

n n
c

  The

cost is highly relied on size of Carry-Once, c so the cost

is reduced by increasing the size c.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

258

2) Hybrid-Scanning: “Hybrid scanning” is determined by

width of column (d) which sets size of caching operands.

As the width of column increases, longer size of

Carry-Once is possible, so performance increases

together with d. The cost of intermediate reload is

determined by following conditions. If condition is

d+1>c, the number of operation is

2+1 2 +1
2(-1) + + 2 + (-1) + 2 + 2

d d
w d w d

c c

      
      
      

If condition is 2 +1> > +1d c d , the number of

operation is

2 2 +1
2(-1)(+1) + (-1) + 2 + 2

d
w d w d

c

  
  
  

. If

condition is >2 +1c d the number of operation is

22(-1)(+1) + (-1) (2 +1)w d w d

3) Operand-Scanning: In “operand-caching,” the size of

“carry-once” is set to value two, because

“operand-caching” uses a number of registers for

retaining operands, so size is restricted to two. The

performance is higher when n is divisible with e and e is

even, because it perfectly suits to size of “carry-once.”

The cost is determined by characteristic of divisibility

and even. If condition is / = /n e n e   and e is odd, the

number of operation is

-1

=1

3 3
2(2(e -1) + 2(-1)) = (-1) (-1) + 4(-1).

2 2

r

k
k r e r r r If

condition is   n/en/e  and e is even, the number of

operation is
-1

=1

3 3
2 = (-1) (-1).

2 2

r

k
ek e r r

 
 
 
 If

condition is   n/en/e  and e is odd, the number of

operation is
-1

=1

3
2((-) + (e -1)) + 2(-1)) =

2

r

k
n re r k r

3
2((2(-) + (-1)(-1)) + 2(-1)).

4
n re r r r e r

4) If condition is   n/en/e  and e is even, the number of

operation is

-1

=1

3
3((-) + = 3 (-) + (-1)

2

r

k
n re r ek r n re er r

5) Consecutive Operand-Caching: In “consecutive operand

caching,” cost of intermediate reload is determined with

same conditions of “operand caching.” This method

shows much more obvious contrasts between

characteristic of e, whether it is odd or even number,

because even number divides number of element

completely. If condition is   n/en/e  and e is odd, the

number of operation is

3 3
2 (-1) + (+ -1)(- 2) + (- 2) .

2 4
e n e r r

 
 
 

 If condition

is   n/en/e  and e is even, the number of operation is

3 3
2 + 2 + (+)(- 2) .

2 4
e n e r

 
 
 

 If condition is / /n e n e   and e

is odd, the number of operation is

3 3
2 (-1) + 2 + (+ -1)(-1) + (-1) .

2 4
e n e r r

 
 
 

If

condition is   n/en/e  and e is even, the number of

operation is
3 3

2 + (+)(-1) .
2 4

e n e r
 
 
 

(a) (b)

(c) (d)

Fig. 5. Implementation result over 8-bit microprocessor(Proposed / Previous).

(a)Operand-Caching. (b)Consecutive Operand-Caching. The number of

reduced cost of intermediate result computation. (c)Operand-Caching.

(d)Consecutive Operand-Caching.

B. Evaluation Result with Embedded Microprocessors

We implemented 160-bit multiplication over ATmega128.

Our method shows better results in all multiplication methods

compared with best known results. The detailed instruction

counts are available in Table I.

TABLE I: INSTRUCTION COUNTS FOR A 160-BIT MULTIPLICATION ON THE

ATMEGA128

Method Load Store Mul Add Others Total

Hybrid-Scanning

Gura [5] 167 40 400 1,360 552 3,106

Uhsadel[8] 238 40 400 986 539 2,881

Scott[9] 200 40 400 1,263 108 2,651

Liu[10] 200 40 400 1,194 391 2,865

This Paper 168 40 400 1,336 79 2,629

Operand-Caching

Michael[6] 80 60 400 1,240 70 2,395

This Paper 70 60 400 1,230 70 2,365

Consecutive Operand-Caching

Seo[7] 70 60 400 1,240 56 2,356

This Paper 70 60 400 1,230 56 2,346

The “(Consecutive) Operand Caching” methods show best

results in microprocessor, so we evaluate the methods with

various sizes of bit. The detailed latency of “Operand

Caching” and “Consecutive Operand Caching” is described

in Table II. For clarity, we provide performance comparison

between previous and proposed methods in Fig. 5 (a) and (b).

The enhancement is measured from 0.5 % to 2.5 %. These

features are generated with advantages from reduced number

of intermediate result computation and detailed information

is described in Fig. 5 (c) and (d).

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

259

TABLE II: CONSECUTIVE OPERAND-CACHING MULTIPLICATION RESULTS

USING PROPOSED METHOD WITH DIFFERENT PARAMETERS

Operand Caching

Size e=2 e=4 e=8 e=10

160 3,821 2,917 2,507 2,365

192 5,475 4,187 3,537 3,467

256 9,671 7,411 6,275 6,115

512 38,295 29,427 24,987 24,171

1024 152,375 117,235 99,659 96,125

2048 607,863 467,955 397,995 383,471

Consecutive Operand Caching

Size e=2 e=4 e=8 e=10

160 3,674 2,838 2,472 2,346

192 5,296 4,088 3,490 3,437

256 9,428 7,272 6,200 6,128

512 37,796 29,128 24,800 24,205

1024 151,364 116,616 99,248 95,975

2048 605,828 466,696 397,136 384,058

V. CONCLUSION

The previous best known method reduced the number of

memory accesses efficiently. However intermediate result

computation is also expensive operation for multi-precision

multiplication, so we focused more on intermediate result

process. Improvement of the process enhances performance

of ordinary multi-precision multiplications excluding

“product-scanning”, so the method affects wide range of

multiplication methods. In this paper, we presented a novel

method, i.e., “carry-once”, for intermediate result

computation of multi-precision multiplication. This method

efficiently reduces an instruction counts by gathering several

carry values and updating the values at once. This is

efficiently implemented and show higher performance than

previous result by up to 2.5 %.

ACKNOWLEDGMENT

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MEST) (No. 2010-0026621).

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” Comm. ACM 21, vol.

2, 1977, pp. 120-126.

[2] D. Hankerson, A. Menezes, and S.Vanstone, Guide to Elliptic Curve

Cryptography, Springer-Verlag, 2004.

[3] M. Scott, “Implementing cryptographic pairings,” Pairing-Based

Cryptography Pairing 2007, vol. 4575, pp. 177-196, 2007.

[4] P. Comba, “Exponentiation cryptosystems on the IBM PC,” IBM

Systems Journal vol. 29, no. 4, pp. 526-538, 1990.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing

Elliptic Curve Cryptography and RSA on 8-bit CPUs,” LNCS, CHES,

vol. 3156, pp. 119-132, 2004.

[6] M. Hutter and E. Wenger, “Fast Multi-precision Multiplication for

Public-Key Cryptography on Embedded Microprocessors,” LNCS,

CHES, vol. 6917, pp. 459-474, 2011.

[7] H. Seo and H. Kim, “Multi-precision Multiplication for Public-Key

Cryptography on Embedded Microprocessors,” presented at WISA,

2012.

[8] L. Uhsadel, A. Poschmann, and C. Paar, “Enabling Full-Size

Public-Key Algorithms on 8-bit Sensor Nodes,” presented at the 4th

European Workshop on Security and Privacy in Ad-hoc and Sensor

Networks, ESAS 2007, Cambridge, UK, July 2-3, 2007.

[10] Z. Liu, J. Grobshadl, and I. Kizhvatov, “Efficient and Side-Channel

Resistant RSA Implementation for 8-bit AVR Microcontrollers,”

Workshop on the Security of the Internet of Things - SOCIOT 2010,

presented at the 1st International Workshop, Tokyo, Japan, Nov. 29.

IEEE Computer Society, Los Alamitos, 2010.

Hwajeong Seo

received the BSEE degree from Pusan

National University, Pusan, Republic of Korea in 2010,

and he received the MS degree program in department of

Computer Engineering at Pusan National University

in

2012.

He is Ph. D course in same major and university.

His research interests include sensor networks,

information security, Elliptic Curve Cryptography, and

RFID security.

Howon Kim

received the BSEE degree from

Kyungpook National University, Daegu, Republic of

Korea, in 1993 and the MS and PhD degrees in

electronic and electrical engineering from the Pohang

University of Science and Technology (POSTECH),

Pohang, Republic of Korea, in 1995 and 1999,

respectively. From July 2003 to June 2004, he studied

with the COSY group at the Ruhr-University of

Bochum,

Germany. He was a senior member of the technical staff at the Electronics

and Telecommunications Research Institute (ETRI), Daejeon, Republic of

Korea. He is currently working as an associate professor with the Department

of Computer Engineering,

School of Computer Science and Engineering,

Pusan National University, Pusan, Republic of Korea. His research interests

include RFID technology, sensor networks, information security, and

computer architecture. Currently, his main research focus is on mobile RFID

technology and sensor networks, public key cryptosystems, and their security

issues.

Dr. Kim

is a member of the IEEE, and the International Association

for Cryptologic Research (IACR).

[9] M. Scott and P. Szczechowiak. (2007). Optimizing Multiprecision

Multiplication for Public Key Cryptography. Cryptology ePrint

Archive, Report 2007/299, [Online]. Available: http://www.

eprint.iacr.org/

