

Abstract—As computing power of GPU increases

dramatically, the GPU is widely used for general-purpose

parallel applications as well as graphics applications. Especially,

programmers using the GPU can easily create multiple threads

with the help of APIs provided by GPU vendors. In GPU

architecture, threads are grouped into a warp to run on the

SIMD pipeline, leading to high performance. However,

computational resources of GPU are not fully utilized in

executing general-purpose applications due to control-flow

instructions, resulting in performance degradation. To improve

the GPU performance, several warp formations for handling

branch divergence due to control-flow instructions have been

proposed. In this work, we analyze the GPU performance

according to warp formations with real GPU hardware

configuration. Our simulation results show that the warp

formation providing high hardware utilization does not

guarantee high performance if hardware resources are not fully

supported. Therefore, hardware configuration should be

considered together with hardware utilization to improve the

GPU performance by using warp formation.

Index Terms—Control-flow instruction, GPU, warp

formation, utilization.

I. INTRODUCTION

Continuing advances in semiconductor technology enables

increasing chip density, leading to improved computing

power of the chip. Unfortunately, increased chip density

causes high power consumption [1]. Therefore,

architecture-level approaches for improving the performance

of the chip with power constraints have become one of major

challenges. Exploiting parallelism can be a good solution to

improve the performance of the chip with power constraints.

Exploiting parallelism with ILP (Instruction Level

Parallelism) has limitations due to high complexity of

scheduling logic and large caches [2]. For this reason,

researches to exploit parallelism with TLP (Thread Level

Parallelism) have been widely proposed. In the TLP,

hardware designer as well as software designer should focus

on improving the parallelism [3]. Many-core processors such

as GPU(Graphics Processing Unit), which are composed of

many processing units, can provide high computational

power to improve the TLP[4].

Typically, the GPU is used as a hardware accelerator for

 Manuscript received October 4, 2012; revised January 21, 2013. This

research was supported by Basic Science Research Program through the

National Research Foundation of Korea(NRF) funded by the Ministry of

Education, Science and Technology(2012R1A1B4003492) and following

are results of a study on the “Leaders Industry-university Cooperation”

Project, supported by the Ministry of Education, Science &

Technology(MEST).

The authors are with the School of Electronics and Computer Engineering,

Chonnam National University, Gwangju, 500-757, South Korea (e-mail:

chj6083@gmail.com, sdo1127@gmail.com, chkim22@chonnam.ac.kr).

graphics rendering operations in common computer systems.

To support real-time graphics rendering operations requiring

high computational power, up-to-date GPUs provide

programmable hardware for graphics algorithms, whereas

previous GPUs are consisted of fixed number of functional

rendering pipeline. Programmable hardware inside the GPU

is named as shader core, which can run diverse graphics

operations, enables high flexibility and high throughput of

the GPU. To take advantage of high flexibility and high

throughput of recent GPUs, general-purpose parallel

applications as well as graphics applications are executed on

the GPU [5].

In order to utilize the GPU for executing general-purpose

computations, GPU vendors provide various APIs

(Application Programming Interface) such as CUDA,

OpenCL, Cg, HLSL and GLSL [6]–[10]. Contrary to

graphics applications, general-purpose applications tend to

have branch divergence due to control-flow instructions [11].

For this reason, recent GPU architecture allows different

program paths caused by branch divergence. However,

branch instructions incur serious performance degradation of

the GPU, because GPU has fine-grained multi-threading on a

SIMD (Single Instruction Multiple Data) pipeline[12], [13].

To overcome the performance degradation due to

control-flow instructions, recent GPUs support solutions for

branch divergence, called warp formation. Several warp

formations for GPUs have been studied: SIMD serialization,

SIMD reconvergence, SIMD dynamic warp formation

[14]–[19].

In general, high-utilization of hardware resources in ideal

SIMD architecture leads to high performance. However,

computational and peripheral hardware resources in real

SIMD architecture are restricted. In this work, we investigate

the impact of warp formation and hardware configuration on

GPU performance. Especially, we present the guideline for

improving the performance of SIMD architecture by

analyzing the correlation between hardware configuration

and warp formation. The rest of this paper is organized as

follows: Section II describes background of our work.

Section III presents the simulation infrastructure and detailed

experimental results. Finally, Section IV concludes this

paper.

II. BACKGROUND

A. GPU Architecture

Fig. 1 illustrates the GPU architecture of our baseline,

similar to NVIDIA Quadro FX5800 [20].

The GPU consists of 30 shader cores which have 32 SIMT

(Single Instruction Multiple Thread) lanes, interconnection

network and DRAM. In a shader core, 32 SIMT lanes can

Impact of Warp Formation on GPU Performance

Hong Jun Choi, Dong Oh Son, and Cheol Hong Kim

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

241DOI: 10.7763/IJCCE.2013.V2.180

simultaneously execute up to 32 threads per cycle. To support

the concurrent execution, threads are combined into group

called warp, which executes together using a single program

counter. Quadro FX5800 supports 32 active warps for a total

of 1,024 active threads per shader core.

Fig. 1. Baseline architecture.

To accommodate many threads, it has huge on-chip

register file resources. Threads within a warp can

communicate via a shared memory which is implemented

within each shader core as an SRAM. Data from off-chip

DRAM is cached on-chip in the local memory (Texture

Cache, Constant Cache, and L2 Data Cache) [21].

B. Warp Formation

After a branch instruction is executed, a warp is divided

into two (or multiple) warps since a SIMD pipeline executes

one single instruction in the same cycle, resulting in

performance degradation due to underutilization. To solve

this problem, several warp formations have been proposed

for handling branch divergence. In this section, we describe

three techniques for branch divergence.

1)

SIMD serialization is to handle branch divergence through

serializing the threads within a warp when a branch

instruction is executed. SIMD serialization is simple and can

be implemented easily, while it cannot guarantee high

performance. After serializing the threads in a warp with

branch divergence, a single warp is separated into multiple

warps. Threads in each separated warp follow the same

program path. Separated warps are executed independently

and never come back into a single warp. In other words,

threads within a warp will be diverged until execution of

threads in a warp is finished, since SIMD serialization does

not support branch reconvergence. Therefore, SIMD

serialization degrades the utilization of computational

resources significantly. In this work, NRCV (no

reconvergence) represents the SIMD serialization.

When a branch instruction is executed, one path is taken

and the other is not-taken. In SIMD reconvergence, threads in

a warp separated by the branch instruction are combined

together after divergent paths have been completed. All

separated threads reach a merging point called reconvergence

point in SIMD reconvergence. Therefore, program path

following the reconvergence point is always precise, even

though control-flow behavior is unclear.

Post-dominator, which is a popular SIMD reconvergence

approach, is employed in recent commercial GPUs to handle

branch divergence [18]. Dominance in post-dominator is

identified by compiler for code optimization. In this approach,

A post-dominates B (“A pdom B”) means that every path

from B to the exit node goes through A. To accomplish the

reconvergence in post-dominator, GPU employs the

divergence stack. An entry of the divergence stack is

consisted of three fields: PC, active mask, and

re-convergence point (or return PC). In this work, PDOM

represents the SIMD post-dominator.

3)

In PDOM, after a warp is generated, threads in a warp are

processed in lock-step with a single instruction until the warp

is completed. Similar to PDOM, threads in a warp generated

by dynamic warp formation are processed in parallel with a

single instruction. However, when a single instruction in a

warp is finished, a warp in dynamic warp formation is broken

while a warp in post-dominator is sustained until the warp is

completed. In other words, after a single instruction is

finished, threads in a warp are divided into the new warp

which has same PC. Then, new warp is processed in

lock-step with a single instruction if it is selected by the

scheduler. Therefore, threads in a warp generated by dynamic

warp formation always have a single PC, leading to full warp

occupancy. In this work, DWF represents the SIMD dynamic

warp formation.

III. EXPERIMENTS

In this section, we briefly describe the simulation

infrastructure. In order to evaluate the performance

according to various warp formations and hardware

configurations, we perform applications selected from

NVIDIA CUDA SDK [22] using GPGPU-sim[23].

GPGPU-sim is constructed from SimpleScalar[24] to model

various aspects of the parallel architecture such as GPU.

A. Experimental Methodology

In this paper, our baseline GPU is modeled by NVIDIA

Quadro FX5800 [20]. Table I shows the GPU system

configuration and memory hierarchy parameters used in our

simulations. In Table I and Table II, bold values show our

baseline GPU architecture.

B. Experimental Results

In this section, we analyze the performance according to

warp formation, computational resource, memory resource.

In the results, NRCV, PDOM and DWF represent SIMD

serialization, post-dominator and dynamic warp formation,

respectively. In this work, we execute diverse benchmarks

(BFS, fastWalshTransform, scanLargeArray, scan,

MersenneTwister, RAY) [21] to analyze the characteristics

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

242

SIMD serialization [14]–[15]

2) SIMD reconvergence [16]–[18]

SIMD dynamic warp formation [19]

of the GPU with various general-purpose applications. But,

we present average value due to limited page.

TABLE I: HARDWARE CONFIGURATION

Parameter Value

Number of Shader Cores 9/15/30

Warp Size 8/16/32

SIMD Pipeline Width 8/16/32

Number of Threads/Core 1024

Shared Memory/Core 16KB

Constant Cache/Core
8KB, 2-way 64byte lines,

Read-only

Texture Cache/Core
8KB, 2-way 64byte lines,

Read-only

L1 Data Cache 32KB, 4-way, 64byte lines

Number of L1 Cache Bank 4/2/1

Clock

 (Core: Interconnection: DRAM)
325MHz: 650MHz: 800MHz

Number of Memory Controller 12

Number of Memory

Chip/Controller
2

Memory Channel Bandwidth 16/8/4 bytes

DRAM Request Queue Size 32

GDDR3 Memory Timing
tCL=10, tRP =10, tRC=35,

tRAS=25, tRCD=12, tRRD=8

TABLE II: INTERCONNECTION NETWORK CONFIGURATION

Parameter Value

Topology Fly

Routing Mechanism Destination Tag

Routing Delay 0

Virtual Channels 1

Virtual Channel Delay 0

Virtual Channel Buffers 8

Virtual Channel Allocator iSLIP

Input Speedup 2

Output Speedup 1

Internal Speedup 1

Flit Size 32 bytes

Fig. 2 shows the normalized IPC of the GPU in executing

general-purpose applications with multiple control-flow

instructions, based on the assumption that the memory

system is idealized. MIMD (Multiple Instruction, Multiple

Data) [26] represents the ideal case architecture providing

full-utilization of computational resources. As shown in the

graph, DWF shows highest IPC among warp formation

methods (NRCV, PDOM, and DWF).

Fig. 2. Performance (with idealized memory) according to warp formation.

PDOM shows better IPC than NRCV. From the results

shown in Fig. 2, we can know that NRCV incurs serious

performance degradation of the GPU compared to the ideal

case (MIMD) due to severe hardware underutilization

whereas DWF and PDOM show less performance

degradation. However, note that the results in the graph are

obtained from the assumption that the memory system is

idealized. As you know, memory resources in commercial

GPU architecture are restricted. Therefore, our baseline GPU

architecture in this work is modeled by QuadroFX5800 [20],

because we focus on the performance of commercial GPUs

with non-ideal memory system according to hardware

configuration and warp formation.

Fig. 3 shows the normalized performance of different warp

formations where memory resources are configured as shown

in Table I. As you can see, the results in Fig. 3 are different to

the results in Fig. 2. PDOM shows highest performance,

while NRCV still incurs serious performance degradation of

the GPU. Even though DWF and MIMD have the potential to

utilize the computational hardware resources fully, they

degrade the performance due to the delay caused by

non-ideal memory system. Therefore, the correlation

between hardware configuration and warp formation should

be considered to improve the performance of SIMD

architecture. For this reason, we analyze the performance of

the GPU varying computational hardware resources, memory

system configuration and warp formation.

Fig. 3. Performance (in real GPU) according to warp formation.

Fig. 4. Performance of warp formation according to computational hardware

configuration.

Fig. 4 shows the performance of three branch handling

methods according to various computational hardware

configurations. In the graph, SC-Number and WS-Number

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

243

denote the number of shader cores and warp size,

respectively. For an example, SC-09/WS-08 means that

target GPU architecture has 9 shader cores and executes 8

threads in a warp on the shader core. Each bar in the graph is

normalized to the IPC of DWF. As depicted in the graph,

performance gap between PDOM and DWF is decreased by

9.6 %(SC-09/WS-08 compared to SC-30/WS-32) and

5.7 %(SC-15/WS-16 compared to SC-30/WS-32). The

performance gap between NRCV and DWF is increased by

9.8 %(SC-09/WS-08 compared to SC-30/WS-32) and

19.3 %(SC-15/WS-16 compared to SC-30/WS-32). The

performance gap between PDOM/NRCV and DWF is

continuously decreased as computational resources are

reduced. As the warp size is decreased, memory bottleneck is

reduced; because the number of memory requests at the same

time is reduced as the warp size is decreased, resulting in

decreased memory conflicts. And, reduced computational

resources have negative impact on the parallelism.

Fig. 5 shows the normalized IPC of three branch handling

methods according to the memory resources. In the graph,

CB-Number and MB-Number denote the number of cache

bank and memory bandwidth, respectively. For an example,

CB-04/MB-16 means that the number of cache bank is 4 and

memory bandwidth is 16Bytes/controller. As shown in the

graph, the performance gap between PDOM and DWF is

decreased by 19.6 %(CB-04/MB-16 compared to

CB-01/MB-04) and 17.2 %(CB-02/MB-08 compared to

CB-01/MB-04). The performance gap between NRCV and

DWF is increased by 26.9 %(CB-04/MB-16 compared to

CB-01/MB-04) and by 20.6 %(CB-02/MB-08 compared to

CB-01/MB-04). Experimental results show that the

performance of DWF improves as the memory resources

increase, because improved memory system alleviate the

problem of warp formation due to high-utilization of

computational resources. However, note that memory

resources are expensive.

Fig. 5. Performance of warp formation according to memory system

configuration.

IV. CONCLUSION

Hardware utilization of the GPU is limited by control-flow

behavior when general-purpose applications are executed. In

this work, we analyzed the efficiency of warp formations,

which have been proposed to improve the hardware

utilization. Contrary to previous expectations, our simulation

results show that the performance of the warp formation

providing better hardware utilization is lower than that of the

warp formation providing worse hardware utilization due to

limited hardware resources such as memory system. Severe

memory bottleneck due to random memory accesses

degrades the GPU performance even though computational

resources are highly utilized by warp formation methods. To

analyze the correlation between the performance and

hardware configuration according to branch divergence

methods, we presented the results with various computational

resources and memory resources. According to our

simulation results, increased memory resources are required

to solve the problems of warp formation methods providing

high-utilization of computational resources. Consequently,

we can know that warp formation for high-utilization of

computational resources cannot be practical without proper

hardware support. Unfortunately, additional hardware

resources require high costs. Therefore, we’ll research on the

new handling methods for branch divergence with limited

memory resources for future work.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock

rate versus IPC: the end of the road for conventional

microArchitectures,” in Proc. 27th International Symposium on

Computer Architecture, Vancouver, 2000, pp. 248-259.

[2] N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism

for superscalar and superpipelined machines,” in Proc. 3th

International Conference on Architectural Support for Programming

Languages and Operating Systems, Boston, 1989, pp. 272-282.

[3] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous

multithreading: maximizing on-chip parallelism,” in Proc. 22th

International Symposium on Computer Architecture, Seattle, 1995, pp.

392-403.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,

and P. Hanrahan, “Brook for GPUs: stream computing on graphics

hardware,” in Proc. 31th Annual Conference on Computer Graphics,

Los Angeles, 2004, pp. 777-786.

[5] E. Lindholm, M. J. Kligard, and H. P. Moreton, “A user-programmable

vertex engine,” in Proc. 28th Annual Conference on Computer

Graphics (SIGGRAPH), Los Angeles, 2001, pp. 149–158.

[6] NVIDIA CUDA Programming Guide. [Online]. Available:

http://www.developer.nvidia.com/object/cuda_3_1_downloads.html

[7] OpenCL. [Online]. Available: http://www.khronos.org/opencl/

[8] NVIDIA Cg Toolkit. [Online]. Available:

https://www.developer.nvidia.com/cg-toolkit

[9] Microsoft HLSL. [Online]. Available:

http://www.msdn2.microsoft.com/en-us/library/bb509638.aspx

[10] OpenGL Shading Language. [Online]. Available:

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf

[11] S. Che, J. Meng, J. Sheaffer, and K. Skadron, “A performance study of

general purpose applications on graphics processors using CUDA,”

Journal of Parallel and Distributed Computing, vol. 68, no. 10, pp.

1370-1380, Oct. 2008.

[12] J. Helin, “Performance analysis of the CM-2, a massively parallel

SIMD computer,” in Proc. 6th International Conference on

Supercomputing, Washington, 1992, pp. 45-52.

[13] A. Levinthal and T. Porter, “Chap - a SIMD graphics processor,” in

Proc. 11th Annual Conference on Computer Graphics (SIGGRAPH),

Minneapolis, 1984, pp. 77-82.

[14] R. A. Lorie and H. R. Strong, “Method for conditional branch

execution in SIMD vector processors,” US Patent 4435758, Mar. 6,

1984.

[15] S. Moy and E. Lindholm, “Method and system for programmable

pipelined graphics processing with branching instructions,” US Patent

6947047, Sep. 20, 2005.

[16] E. Rotenberg, Q. Jacobson, and J. E. Smith, “A study of control

independence in superscalar processors,” in Proc. 5th International

Symposium on High-Performance Computer Architecture, Orlando,

1999, pp. 115-124.

[17] B. W. Coon and J. E. Lindholm, “System and method for managing

divergent threads in SIMD architecture,” US Patent 7353369, Apr. 1,

2008.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

244

[18] E. Rotenberg, Q. Jacobson, and J. Smith, “A study of control

independence in superscalar processors,” in Proc. 5th International

Symposium on High-Performance Computer Architecture, Orlando,

1999, pp. 115-124.

[19] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic Warp

Formation and Scheduling for Efficient GPU Control Flow,” in Proc.

40th Microarchitecture, Vancouver, 2007, pp. 407-420.

[20] QuadroFX5800. [Online]. Available:

http://www.nvidia.com/object/product_quadro_fx_5800_us.html

[21] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt,

“Hardware Transactional Memory for GPU Architectures,” in Proc.

44th Microarchitecture, Porto Alegre, 2011, pp. 296-307.

[22] CUDA SDK. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/sdk/website/sam

ples.html

[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in

Proc. 9th International Symposium on Performance Analysis of

Systems and Software, Boston, 2009, pp. 163-174.

[24] SimpleScalar Tool Set. [Online]. Available:

http://www.simplescalar.com

[25] Booksim. [Online]. Available:

http://www.nocs.stanford.edu/booksim.html

[26] M. J. Flynn, “Very high-speed computing systems,” in Proc.the IEEE,

vol. 54, no. 12, pp. 1901-1909, Dec. 1966.

Hong Jun Choi was born in 1985, in South Korea. He

obtained Bachelors (2009) and Masters(2011) in

School of Electronics and Computer Engineering,

Chonnam National University, Gwangju, South

Korea. He is a Ph.D. student in School of Electronics

and Computer Engineering, Chonnam National

University since September 2011. His research

interests include computer architecture,

energy/thermal-aware processor architecture, and

parallel computing.

Dong Oh Son was born in 1986, in South Korea. He

received the B.S. and M.S. degree in School of

Electronics and Computer Engineering from Chonnam

National University in 2010 and 2012, respectively.

He is the Ph.D. student in School of Electronics and

Computer Engineering, Chonnam National University

since 2012. His research interests include embedded

system, heterogeneous system, computer architecture.

Cheol Hong Kim was born in 1975, in South Korea.

He received the B.S., M.S, and Ph.D. degrees in

Computer Engineering from Seoul National

University, Seoul, Korea, in 1998, 2000, and 2006,

respectively. He worked as a senior engineer in

Samsung Electronics, Korea from 2005 to 2007. In

2007, he joined the faculty of the School of

Electronics and Computer Engineering from

Chonnam National University, Gwangju, Korea. His

research interests include high-performance multicore architecture,

power-aware processor architecture, embedded systems design, and GPU

architecture design.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

245

