
  

 

Abstract—As computing power of GPU increases 

dramatically, the GPU is widely used for general-purpose 

parallel applications as well as graphics applications. Especially, 

programmers using the GPU can easily create multiple threads 

with the help of APIs provided by GPU vendors. In GPU 

architecture, threads are grouped into a warp to run on the 

SIMD pipeline, leading to high performance. However, 

computational resources of GPU are not fully utilized in 

executing general-purpose applications due to control-flow 

instructions, resulting in performance degradation. To improve 

the GPU performance, several warp formations for handling 

branch divergence due to control-flow instructions have been 

proposed. In this work, we analyze the GPU performance 

according to warp formations with real GPU hardware 

configuration. Our simulation results show that the warp 

formation providing high hardware utilization does not 

guarantee high performance if hardware resources are not fully 

supported. Therefore, hardware configuration should be 

considered together with hardware utilization to improve the 

GPU performance by using warp formation. 

 

Index Terms—Control-flow instruction, GPU, warp 

formation, utilization. 

 

I. INTRODUCTION 

Continuing advances in semiconductor technology enables 

increasing chip density, leading to improved computing 

power of the chip. Unfortunately, increased chip density 

causes high power consumption [1]. Therefore, 

architecture-level approaches for improving the performance 

of the chip with power constraints have become one of major 

challenges. Exploiting parallelism can be a good solution to 

improve the performance of the chip with power constraints. 

Exploiting parallelism with ILP (Instruction Level 

Parallelism) has limitations due to high complexity of 

scheduling logic and large caches [2]. For this reason, 

researches to exploit parallelism with TLP (Thread Level 

Parallelism) have been widely proposed. In the TLP, 

hardware designer as well as software designer should focus 

on improving the parallelism [3]. Many-core processors such 

as GPU(Graphics Processing Unit), which are composed of 

many processing units, can provide high computational 

power to improve the TLP[4]. 

Typically, the GPU is used as a hardware accelerator for 
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graphics rendering operations in common computer systems. 

To support real-time graphics rendering operations requiring 

high computational power, up-to-date GPUs provide 

programmable hardware for graphics algorithms, whereas 

previous GPUs are consisted of fixed number of functional 

rendering pipeline. Programmable hardware inside the GPU 

is named as shader core, which can run diverse graphics 

operations, enables high flexibility and high throughput of 

the GPU. To take advantage of high flexibility and high 

throughput of recent GPUs, general-purpose parallel 

applications as well as graphics applications are executed on 

the GPU [5]. 

In order to utilize the GPU for executing general-purpose 

computations, GPU vendors provide various APIs 

(Application Programming Interface) such as CUDA, 

OpenCL, Cg, HLSL and GLSL [6]–[10]. Contrary to 

graphics applications, general-purpose applications tend to 

have branch divergence due to control-flow instructions [11]. 

For this reason, recent GPU architecture allows different 

program paths caused by branch divergence. However, 

branch instructions incur serious performance degradation of 

the GPU, because GPU has fine-grained multi-threading on a 

SIMD (Single Instruction Multiple Data) pipeline[12], [13]. 

To overcome the performance degradation due to 

control-flow instructions, recent GPUs support solutions for 

branch divergence, called warp formation. Several warp 

formations for GPUs have been studied: SIMD serialization, 

SIMD reconvergence, SIMD dynamic warp formation 

[14]–[19]. 

In general, high-utilization of hardware resources in ideal 

SIMD architecture leads to high performance. However, 

computational and peripheral hardware resources in real 

SIMD architecture are restricted. In this work, we investigate 

the impact of warp formation and hardware configuration on 

GPU performance. Especially, we present the guideline for 

improving the performance of SIMD architecture by 

analyzing the correlation between hardware configuration 

and warp formation. The rest of this paper is organized as 

follows: Section II describes background of our work. 

Section III presents the simulation infrastructure and detailed 

experimental results. Finally, Section IV concludes this 

paper. 

 

II. BACKGROUND 

A. GPU Architecture 

Fig. 1 illustrates the GPU architecture of our baseline, 

similar to NVIDIA Quadro FX5800 [20].  

The GPU consists of 30 shader cores which have 32 SIMT 

(Single Instruction Multiple Thread) lanes, interconnection 

network and DRAM. In a shader core, 32 SIMT lanes can 
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simultaneously execute up to 32 threads per cycle. To support 

the concurrent execution, threads are combined into group 

called warp, which executes together using a single program 

counter. Quadro FX5800 supports 32 active warps for a total 

of 1,024 active threads per shader core.  

 

 
Fig. 1. Baseline architecture. 

To accommodate many threads, it has huge on-chip 

register file resources. Threads within a warp can 

communicate via a shared memory which is implemented 

within each shader core as an SRAM. Data from off-chip 

DRAM is cached on-chip in the local memory (Texture 

Cache, Constant Cache, and L2 Data Cache) [21]. 

B. Warp Formation 

After a branch instruction is executed, a warp is divided 

into two (or multiple) warps since a SIMD pipeline executes 

one single instruction in the same cycle, resulting in 

performance degradation due to underutilization. To solve 

this problem, several warp formations have been proposed 

for handling branch divergence. In this section, we describe 

three techniques for branch divergence. 

1)  

SIMD serialization is to handle branch divergence through 

serializing the threads within a warp when a branch 

instruction is executed. SIMD serialization is simple and can 

be implemented easily, while it cannot guarantee high 

performance. After serializing the threads in a warp with 

branch divergence, a single warp is separated into multiple 

warps. Threads in each separated warp follow the same 

program path. Separated warps are executed independently 

and never come back into a single warp. In other words, 

threads within a warp will be diverged until execution of 

threads in a warp is finished, since SIMD serialization does 

not support branch reconvergence. Therefore, SIMD 

serialization degrades the utilization of computational 

resources significantly. In this work, NRCV (no 

reconvergence) represents the SIMD serialization. 

  

When a branch instruction is executed, one path is taken 

and the other is not-taken. In SIMD reconvergence, threads in 

a warp separated by the branch instruction are combined 

together after divergent paths have been completed. All 

separated threads reach a merging point called reconvergence 

point in SIMD reconvergence. Therefore, program path 

following the reconvergence point is always precise, even 

though control-flow behavior is unclear. 

Post-dominator, which is a popular SIMD reconvergence 

approach, is employed in recent commercial GPUs to handle 

branch divergence [18]. Dominance in post-dominator is 

identified by compiler for code optimization. In this approach, 

A post-dominates B (“A pdom B”) means that every path 

from B to the exit node goes through A. To accomplish the 

reconvergence in post-dominator, GPU employs the 

divergence stack. An entry of the divergence stack is 

consisted of three fields: PC, active mask, and 

re-convergence point (or return PC). In this work, PDOM 

represents the SIMD post-dominator.  

3)  

In PDOM, after a warp is generated, threads in a warp are 

processed in lock-step with a single instruction until the warp 

is completed. Similar to PDOM, threads in a warp generated 

by dynamic warp formation are processed in parallel with a 

single instruction. However, when a single instruction in a 

warp is finished, a warp in dynamic warp formation is broken 

while a warp in post-dominator is sustained until the warp is 

completed. In other words, after a single instruction is 

finished, threads in a warp are divided into the new warp 

which has same PC. Then, new warp is processed in 

lock-step with a single instruction if it is selected by the 

scheduler. Therefore, threads in a warp generated by dynamic 

warp formation always have a single PC, leading to full warp 

occupancy. In this work, DWF represents the SIMD dynamic 

warp formation. 

 

III. EXPERIMENTS 

In this section, we briefly describe the simulation 

infrastructure. In order to evaluate the performance 

according to various warp formations and hardware 

configurations, we perform applications selected from 

NVIDIA CUDA SDK [22] using GPGPU-sim[23]. 

GPGPU-sim is constructed from SimpleScalar[24] to model 

various aspects of the parallel architecture such as GPU.  

A. Experimental Methodology  

In this paper, our baseline GPU is modeled by NVIDIA 

Quadro FX5800 [20]. Table I shows the GPU system 

configuration and memory hierarchy parameters used in our 

simulations. In Table I and Table II, bold values show our 

baseline GPU architecture. 

B. Experimental Results  

In this section, we analyze the performance according to 

warp formation, computational resource, memory resource. 

In the results, NRCV, PDOM and DWF represent SIMD 

serialization, post-dominator and dynamic warp formation, 

respectively. In this work, we execute diverse benchmarks 

(BFS, fastWalshTransform, scanLargeArray, scan, 

MersenneTwister, RAY) [21] to analyze the characteristics 
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of the GPU with various general-purpose applications. But, 

we present average value due to limited page. 

 
TABLE I: HARDWARE CONFIGURATION 

Parameter Value 

Number of Shader Cores 9/15/30 

Warp Size  8/16/32 

SIMD Pipeline Width 8/16/32 

Number of Threads/Core 1024 

Shared Memory/Core 16KB 

Constant Cache/Core 
8KB, 2-way 64byte lines, 

Read-only 

Texture Cache/Core 
8KB, 2-way 64byte lines, 

Read-only 

L1 Data Cache 32KB, 4-way, 64byte lines 

Number of L1 Cache Bank 4/2/1 

Clock 

 (Core: Interconnection: DRAM) 
325MHz: 650MHz: 800MHz 

Number of Memory Controller 12 

Number of Memory 

Chip/Controller 
2 

Memory Channel Bandwidth 16/8/4 bytes 

DRAM Request Queue Size 32 

GDDR3 Memory Timing 
tCL=10, tRP =10, tRC=35, 

tRAS=25, tRCD=12, tRRD=8 

 
TABLE II: INTERCONNECTION NETWORK CONFIGURATION 

Parameter Value 

Topology  Fly 

Routing Mechanism Destination Tag 

Routing Delay 0 

Virtual Channels 1 

Virtual Channel Delay 0 

Virtual Channel Buffers 8 

Virtual Channel Allocator iSLIP 

Input Speedup 2 

Output Speedup 1 

Internal Speedup 1 

Flit Size 32 bytes 

 

Fig. 2 shows the normalized IPC of the GPU in executing 

general-purpose applications with multiple control-flow 

instructions, based on the assumption that the memory 

system is idealized. MIMD (Multiple Instruction, Multiple 

Data) [26] represents the ideal case architecture providing 

full-utilization of computational resources. As shown in the 

graph, DWF shows highest IPC among warp formation 

methods (NRCV, PDOM, and DWF).  

 

 
Fig. 2. Performance (with idealized memory) according to warp formation. 

PDOM shows better IPC than NRCV. From the results 

shown in Fig. 2, we can know that NRCV incurs serious 

performance degradation of the GPU compared to the ideal 

case (MIMD) due to severe hardware underutilization 

whereas DWF and PDOM show less performance 

degradation. However, note that the results in the graph are 

obtained from the assumption that the memory system is 

idealized. As you know, memory resources in commercial 

GPU architecture are restricted. Therefore, our baseline GPU 

architecture in this work is modeled by QuadroFX5800 [20], 

because we focus on the performance of commercial GPUs 

with non-ideal memory system according to hardware 

configuration and warp formation. 

Fig. 3 shows the normalized performance of different warp 

formations where memory resources are configured as shown 

in Table I. As you can see, the results in Fig. 3 are different to 

the results in Fig. 2. PDOM shows highest performance, 

while NRCV still incurs serious performance degradation of 

the GPU. Even though DWF and MIMD have the potential to 

utilize the computational hardware resources fully, they 

degrade the performance due to the delay caused by 

non-ideal memory system. Therefore, the correlation 

between hardware configuration and warp formation should 

be considered to improve the performance of SIMD 

architecture. For this reason, we analyze the performance of 

the GPU varying computational hardware resources, memory 

system configuration and warp formation. 

 

 
Fig. 3. Performance (in real GPU) according to warp formation. 

 

 
Fig. 4. Performance of warp formation according to computational hardware 

configuration. 

 

Fig. 4 shows the performance of three branch handling 

methods according to various computational hardware 

configurations. In the graph, SC-Number and WS-Number 
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denote the number of shader cores and warp size, 

respectively. For an example, SC-09/WS-08 means that 

target GPU architecture has 9 shader cores and executes 8 

threads in a warp on the shader core. Each bar in the graph is 

normalized to the IPC of DWF. As depicted in the graph, 

performance gap between PDOM and DWF is decreased by 

9.6 %( SC-09/WS-08 compared to SC-30/WS-32) and 

5.7 %( SC-15/WS-16 compared to SC-30/WS-32). The 

performance gap between NRCV and DWF is increased by 

9.8 %( SC-09/WS-08 compared to SC-30/WS-32) and 

19.3 %( SC-15/WS-16 compared to SC-30/WS-32). The 

performance gap between PDOM/NRCV and DWF is 

continuously decreased as computational resources are 

reduced. As the warp size is decreased, memory bottleneck is 

reduced; because the number of memory requests at the same 

time is reduced as the warp size is decreased, resulting in 

decreased memory conflicts. And, reduced computational 

resources have negative impact on the parallelism. 

Fig. 5 shows the normalized IPC of three branch handling 

methods according to the memory resources. In the graph, 

CB-Number and MB-Number denote the number of cache 

bank and memory bandwidth, respectively. For an example, 

CB-04/MB-16 means that the number of cache bank is 4 and 

memory bandwidth is 16Bytes/controller. As shown in the 

graph, the performance gap between PDOM and DWF is 

decreased by 19.6 %( CB-04/MB-16 compared to 

CB-01/MB-04) and 17.2 %( CB-02/MB-08 compared to 

CB-01/MB-04). The performance gap between NRCV and 

DWF is increased by 26.9 %( CB-04/MB-16 compared to 

CB-01/MB-04) and by 20.6 %( CB-02/MB-08 compared to 

CB-01/MB-04). Experimental results show that the 

performance of DWF improves as the memory resources 

increase, because improved memory system alleviate the 

problem of warp formation due to high-utilization of 

computational resources. However, note that memory 

resources are expensive. 

 
Fig. 5. Performance of warp formation according to memory system  

configuration. 

 

IV. CONCLUSION 

Hardware utilization of the GPU is limited by control-flow 

behavior when general-purpose applications are executed. In 

this work, we analyzed the efficiency of warp formations, 

which have been proposed to improve the hardware 

utilization. Contrary to previous expectations, our simulation 

results show that the performance of the warp formation 

providing better hardware utilization is lower than that of the 

warp formation providing worse hardware utilization due to 

limited hardware resources such as memory system. Severe 

memory bottleneck due to random memory accesses 

degrades the GPU performance even though computational 

resources are highly utilized by warp formation methods. To 

analyze the correlation between the performance and 

hardware configuration according to branch divergence 

methods, we presented the results with various computational 

resources and memory resources. According to our 

simulation results, increased memory resources are required 

to solve the problems of warp formation methods providing 

high-utilization of computational resources. Consequently, 

we can know that warp formation for high-utilization of 

computational resources cannot be practical without proper 

hardware support. Unfortunately, additional hardware 

resources require high costs. Therefore, we’ll research on the 

new handling methods for branch divergence with limited 

memory resources for future work. 
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