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Abstract—In many communication systems, information 

carrying symbols are transmitted in blocks with guard intervals 

between blocks for avoiding inter-block interference. This 

paper proposes a block transmission system that can be 

decomposed into a set of parallel subblock transmission systems 

having additive white Gaussian noise (AWGN) channels with 

equal noise powers even when the channel additive noise is 

non-Gaussian. The block transmission system has the 

advantages that standard signal design, block codes, and 

symbol detection methods for an AWGN channel are easily 

incorporated into the block transmission system and that the 

system is easily implemented by FFT processors. 

 

Index Terms—Block transmission, OFDM, spread spectrum 

communication, multiplexing, channel equalization.  

 

I. INTRODUCTION 

In many communication systems, symbols are transmitted 

in blocks or frames. Digital audio broadcasting employs 

block-wise processing such as block coding that may include 

a filter bank or a lapped transform to improve coding 

efficiency [1]. One of the most important block transmission 

systems is the orthogonal frequency division multiplexing 

(OFDM). In OFDM, information carrying symbols are 

multiplexed using the inverse discrete Fourier transform 

(IDFT) at the transmitter, and recovers the symbols using the 

discrete Fourier transform (DFT) at the receiver. When there 

is a frequency-selective fading in the channel, reliable 

detection of symbols carried by the faded subcarriers 

becomes difficult because the system splits the 

frequency-selective spectrum into a large number of 

independent narrowband flat sub-channels. In order to 

overcome this difficulty, spreading techniques are 

incorporated into the OFDM system such as the 

complex-field coding [2], Hadamard or Fourier type 

transform methods [3], and short block transform methods 

[4]. 

This paper proposes a new block transmission system in 

which information carrying symbols are grouped into a 

number of subblocks. At a transmitter, these subblocks are 

multiplexed into a single sequence which is then transmitted. 

At a receiver, an equalizer is applied, and then the transmitted 

symbols are recovered by the demultiplexer which performs 

the reverse of the multiplexer. The multicarrier residue 
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division multiplexing (MC-RDM) in [5] is used as the 

multiplexer because it has the property that information of 

each subblock symbol is dispersed among transmitting 

symbols with respect time as well as frequency. 

The proposed system has the property that, even when 

there is a frequency-selective fading in the channel, subblock 

noise symbols due to an additive noise on the propagation 

channel become uncorrelated Gaussian random variables 

with same variances for a wide range of additive noise types. 

In other words, the block transmission system is decomposed 

into a set of additive white Gaussian noise (AWGN) channel 

systems with equal noise powers 

 

II. BLOCK TRANSMISSION SYSTEM 

The baseband model of the proposing block transmission 

system is depicted in Fig. 1. The system transmits N=KM 

symbols in one block that are grouped into M subblocks 

Xm=[Xm(0) Xm(1) … Xm(K-1)], 0mM-1, of length K. 

According to MC-RDM in [5], these subblocks are 

multiplexed into a single N-length transmitting sequence x(n), 

0≤n≤N-1, which  is obtained by 
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The K-length sequences [x(m) x(M+m) …x((K-1)M+m)], 

0mM-1, are called polyphase components of the sequence 

x(n), 0nN-1. The above equations say that the polyphase 

components are computed by K-point IFFT processors as 

shown in the figure. The polyphase components are 

composed into the single sequence x(n) at the box indicated 

by Poly. Com. 

 
Fig. 1. The proposed baseband block transmission. 

 

The discrete-time version of baseband distortion from the 

transmitted sequence to the received sequence is represented 
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by the channel impulse response h(n), and the channel 

additive noise (n). We assume that interblock interference 

is avoided by placing a guard interval before transmitting the 

next block, the guard interval greater than the length of the 

channel impulse response. 

The received sequence at the receiver is denoted as r(n). 

An equalizer whose impulse response is denoted as g(n) is 

applied to the received sequence in order to cancel the effect 

of the channel impulse response. The equalizer output 

sequence y(n), 0nN-1, is decomposed into its polyphase 

components [y(m) y(M+m) …y((K-1)M+m)], 0mM-1. The 

subblock symbols are recovered by taking the K-point FFTs 

of the polyphase components as 
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Clearly, if the equalizer output is equal to the transmitted 

sequence, that is, y(n)=x(n), the recovered subblocks 

Ym=[Ym(0) Ym(1) … Ym(K-1)], 0mM-1, coincide with the 

transmitted subblocks. 

 

III. NOISE ANALYSIS 

We assume that the channel additive noise samples (n) 

and (n’) are statistically independent when nn’, and that 

the noise is zero-mean with the variance 
2=E{|(n)|2}, 

where E{•} denotes the expected value. The noise may be 

non-Gaussian such as impulsive noise. 

If the length of the equalizer impulse response g(n) is 

denoted as Lg, the equalizer output noise (n) is given by 
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The variance of the equalizer output noise is then given by 
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This variance is independent of the time index n. 

According to (2), the subblock noise m(k) contained in 

the recovered subblock symbol Ym(k) is given by 
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Each subblock noise symbol is given as a linear sum of 

equalizer output noise symbols separated by M-1 samples. 

Equation (3) says that, if MLg, the noise samples  (iM+m), 

0iK-1, are mutually independent. Therefore, if MLg, each 

of the subblock noise symbol is given as a sum of K 

statistically independent random variables.  

The above property is clearly different from the case of 

OFDM, in which the receiver takes DFT of consecutive 

samples. The central-limit theorem says that a sum of 

statistically independent random variables of fairly general 

statistical types approaches a Gaussian random variable as 

the number of sum increases [6]. When MLg, we have 
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The above arguments are summarized in the following 

property. 

Property: Suppose that the channel additive noise  (n) 

and  (n’) are zero-mean independent for nn’. If the number 

M of the subblocks is greater than or equal to the equalizer 

impulse response length Lg, then the subblock noise symbols 

m(k), 0kK-1, approaches zero-mean uncorrelated 

Gaussian random variables with the same variances as the 

subblock length K increases for fairly general propagation 

additive noise types. Accordingly, the block transmission in 

Fig. 1 is viewed as the parallel transmission system shown in 

Fig. 2. 

 
Fig. 2. Equivalent parallel transmission model. m (k) are zero-mean 

uncorrelated Gaussian noise with the same powers. 

 

IV. EQUALIZER DESIGN 

As seen in the property of the previous section, it is 

desirable to design the equalizer such that the impulse 

response length Lg is as short as possible while keeping its 

ability to cancel the distortion due to the channel impulse 

response.  

Let h (n), 0≤n≤Lh-1, be the channel impulse response 

where Lh denote the length, and introduce the (Lh+Lg-1)×Lg 

matrix H defined by 
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The equalizer impulse response is represented in the vector 
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as g= [g (0) g (1) … g (Lg-1)] T. We may design the equalizer 

by finding the vector g that minimizes 

 
2

ug  HD
                                (8) 

 

In this equaltion, u is the (Lh+Lg-1)-dimensional column 

vector having one at the [Lg/2]th place and zeros in all the 

other entries, where [Lg/2] denotes the integral part of Lg/2. 

Then the equalizer output will yields the approximate to the 

[Lg/2]-unit times delayed version of the transmitted sequence. 

Calculation shows that the vector ĝ that minimizes D is 

obtained as 
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where H[Lg/2] is the [Lg/2]th low vector of the matrix H. Let 
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This value indicates the performance of the equalizer when 

the length of the equalizer impulse response is Lg. 

Example 1: We demonstrate the equalizer design using 

Rayleigh distributed channels, having complex zero-mean 

Gaussian taps with exponential power profile 
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where h
2 and c are real constants with 0<c<1. This type of 

channel models is widely used for simulations [7]-[9]. For 

creating the matrix H, the channel impulse response length Lh 

is decided as the smallest integer n such that cn<10-5. Channel 

impulse responses are created according to Monte Carlo trials, 

and Dmin is estimated by the numerical average of 200 trials. 

The average of Dmin is ploted as a function of Lg in Fig. 3 for 

c=0.4, 0.6, and 0.8. Dmin rapidly decreases as Lg increases, 

and can be made sufficiently small if Lg≥32. For this choice 

of Lg, it is sufficient to choose M=32 in order to make 

(iM+m), 0≤i≤K-1, are mutually independent. 
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Fig. 3. Dmin as a function of the length Lg of the equalizer impulse response. 

 

V. IMPULSIVE NOISE ANALYSIS 

Non-Gaussian noise that appears frequently in practice is 

impulsive noise. When the propagation channel is 

contaminated by such noise, an OFDM system performs 

better than a single carrier system because of its 

time-diversity [10]. The performance can be further 

improved by estimating impulsive noise terms on a frequency 

domain and subtracting them from the equalizer output [11], 

or by incorporating error-correcting-type codes for canceling 

impulsive noise [12]. However, when there is a 

frequency-selective fading in the channel, reliable detection 

of symbols carried by the faded subcarriers becomes difficult. 

In order to overcome this difficulty, spreading techniques are 

incorporated into the OFDM system such as the 

complex-field coding [2], Hadamard or Fourier type 

transform methods [3], and short block transform methods 

[4]. 

Since the statistic of the channel additive noise (n) is 

assumed to be independent of n, the impulsive noise model is, 

ignoring dependency on n for notational simplicity, 

represented as 

 

 )(n
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where  and  are zero-mean white Gaussian noise processes 

with variances 
2 and 

2, respectively, such that 
2 is 

much greater than 
2, and  is a random variable that is 

either zero or one [10], [12]. The probability of =1 is 

denoted by p. The variance of  is then given by 


2=E{||2}=

2+p
2. 

The probability density function (PDF) of the complex 

Gaussian random variable  is written as [13] 
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The PDF of the second term  in  is given by 
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where =R+jI, and (R) is the Dirac delta function.  

The characteristic function of  is given as 
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In this equation, R and I represent the real and imaginary 

parts of , respectively. This notational convention is applied 

for other variables as well. By (14), the characteristic 

function of  is given by 
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Since  and  are mutually independent, the characteristic 
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function of the channel noise  is given as the product of the 

characteristic functions of  and  which is 
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This channel noise is fed into the equalizer. 

According to (3), the equalizer output noise (n) is the sum 

of g(m)(n-m), 0≤m≤Lg-1. Since the statistic of the channel 

noise (n-m) is independent of n-m, the channel noise is 

represented as n-m)=R+jI. Then the real and the 

imaginary parts of g(m)(n-m) are given by gR(m)R-gI(m)I, 

and gR(m)I+gI(m)R, respectively. The characteristic 

function of g(m)(n-m) is computed as 
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Since g(m)(n-m), 0≤m≤Lg-1, are statistically independent, 

the characteristic function of (n) is obtained as the product 

of these characteristic functions which is given by 
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By (4) and 
2=E{||2}=

2+p
2, the variance of  is 

given as 
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Fig. 4. Square difference (SD) as a function of K. 
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Fig. 5. Real parts of typical channel noise (n) and subblock noise m(k) 

when 
2=0.001, 

2=0.1, p=0.01, and M=K=32. 
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The subblock noise symbol m(k) is a linear sum of 

(nM+m)/(K1/2), 0≤n≤K-1, according to (19). We assume that 

M is large enough so that (nM+m) /(K1/2), 0≤n≤K-1, are 

independent. Then the characteristic function of m(k) is 

given by [6] 
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As K increases, this characteristic function should 

approach the characteristic function for a Gaussian random 

variable with the variance 
2 because the variances of  and 

 are equal by (6). 

Example 2: The channel impulse response model in 

Example 1 is used for this example as well. The equalizer is 

designed by assigning its impulse response length to be 

Lg=32 which is sufficiently long to cancel the effect of the 

linear distortion due to the channel impulse response as seen 

by Fig. 2. For this equalizer, if M≥32, (nM+m) /(K1/2), 

0≤n≤K-1, are independent. 

The impulsive noise is created using parameters: 


2=0.001, 

2=0.1, and p=0.01. The difference between 

() and the characteristic function of a Gaussian random 

variable with the variance 
2 is measured by the square 

difference (SD), 
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Numerical averages of SDs are plotted in Fig. 4 as a 

function of K when the profile decaying constants for the 

channel impulse response are c=0.4, 0.6, and 0.8. The 

characteristic function is sufficiently close to the 

characteristic function for a Gaussian random variable by 

choosing K≥32. Combining with the condition M≥32, the 

condition on the block length becomes N=MK≥1024. 

Real parts of typical channel noise and the sublock noise 

are shown in Fig. 5, when M=32, K=32, and c=0.6. The 

subblock noise sequences [m(0) m(1) … m(K-1)] are 

arranged in the order m=0, 1, …, M-1. While the channel 

noise has clear impulsive spikes, the subblock noise looks 

typical zero-mean white Gaussian. 

 

VI. CONCLUSION 

This paper has proposed a block transmission system that 

can be viewed as a set of subblock transmission systems with 

additive white Gaussian noise (AWGN) channels of same 

variances even if the propagation additive noise is 

non-Gaussian such as impulsive noise. Spreading techniques 

often used for the OFDM system are not required. Standard 

modulation, signaling techniques, and block error correcting 

codes are easily incorporated into each of the subblock 
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systems. The system can be implemented efficiently using 

FFT processors. 
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