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Abstract—Conditional entropy measures information flow 

from one discrete random to another.  Conventional entropy is 

calculated from conditional or joint probabilities of two 

variables.  When the joint probability is not known, the 

conditional entropy cannot be calculated.  This paper presents 

an approach to estimate the conditional entropy using indirect 

conditional information.  The result of the estimation is 

overestimated by less than ten percent of the actual value for 

normal cases. 

 
Index Terms—Entropy, conditional entropy, information 

flow, indirect conditional information.  

 

I. INTRODUCTION 

Entropy is the statistical mechanics in measurement of 

uncertainly and is of practical uses in various fields such as 

thermodynamics, mathematics, information theory computer 

sciences, social sciences and economics [1].  In information 

theory, entropy is a measurement of amount of information 

[2], which is usually measured in bits, nats or bans [3].  The 

concept of entropy was first introduced by C. E. Shannon in a 

1948 paper “Mathematical Theory of Communication [4].  

Entropy of information is of an important role in information 

security.  It I used in the determination of the unicity distance 

of a ciphertext, the prefect secrecy and its conditional value 

can be measured to see if there is an information flow or 

leakage from one variable to another [5].  This paper 

proposes an approach to estimate the value of entropy using 

indirect conditional information. This means that when the 

random variable associated with the entropy is unknown, and 

the direct conditional information is not available, we can 

estimate the value of the entropy from indirect conditional 

information using the proposed approach.  This paper is 

organized in five parts as follows.  The second part explains 

related theories, such as the use of the information entropy as 

well as the calculation of the information entropy and the 

conditional entropy.  The third part gives details of the 

proposed approach, which estimates the information entropy 

when only indirect conditional is given.  The fourth part is the 

results of some experiments using the proposed approach.  

The last part is the conclusions and future works followed by 
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II. RELATED THEORIES 

Entropy H(M) of a discrete random variable M, with 

possible values {m1, m2, …, mn} in bits can be calculated as in 

the following formulae. 

 

     (1) 

 

Information entropy involves a number of theories.  In 

information security, information entropy is used to 

determine the unicity distance and to measure the 

information flow between variables.   

A. Unicity Distance 

Unicity distance is a technical term in cryptography 

representing the size of a ciphertext that is required to break 

the ciphertext by lessening the number of possible spurious 

keys to zero [6], [7], [8].  This means that there should be 

only one key that can decrypt the ciphertext and yield a 

meaningful result.  The unicity distance of a ciphertext 

depends upon the information entropy of the encryption key 

as well as the redundancy of the plaintext from which the 

ciphertext is constructed. 

The unicity distance of a ciphrtext can be calculated using 

the following formulae. 

 

            (2) 

 

When the plaintext has no redundancy at all, the unicity 

distance of its ciphertext becomes infinity regardless of the 

encryption key size.  This achieves the perfect secrecy, a 

crypto system in which the ciphertext gives no information 

about the plaintext [9]. 

B. Information Flow Model 

Controlling the flow of information is an important part of 

information security.  The flow of information from a 

discrete random variable to another can be measured in an 

information flow model.  One of the models can be 

constructed as an entropy based analysis [10] using the 

conditional entropy [11], [12].  For instance, given two 

random discrete random variables, X and Y, we can measure 

if there is any information flow from the variable X to the 

variable Y by calculating the entropy of Y and the entropy of 

Y given X.  There is no information flow from the variable X 

to the variable Y if and only of the entropy of Y and the 

entropy of Y given X are equal.  This means that getting any 

information about X gives no information about Y.  The 
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difference between the entropy and its conditional entropy 

indicates the level of information flow or leakage from one 

variable to another.  The conditional entropy of Y given X is 

usually written as H(Y|X) and can be calculated as in the 

following formulae. 

 

              (3) 

 

The conditional entropy can be calculated when the joint 

probability of the two discrete random variables are known.  

In some situations, such as the one having three random 

variables, X, Y, and Z, with joint probabilities p(x,y) and p(y,z) 

are all known, it is not possible to find the information flow 

between X and Z as their joint probabilities are not given.  

This paper presents the estimation of the conditional 

probability in this situation as explained in the next section. 

 

III. THE PROPOSED APPROACH 

As mentioned in the next section, our proposed approach 

aims to estimate the conditional entropy of a discrete random 

variable when the joint probabilities are absent.  This can be 

achieved by measuring the reduction in the amount of 

information in one step and proportionally estimate the 

reduction of the amount of information in the next step.  The 

approach can be applied to a problem of any number of 

random variables.  For simplicity, we use an example of three 

random variables to demonstrate the approach.   

Random variables: X, Y, and Z. 

Known probabilities: p(x), p(y), p(z), p(x, y), p(x, z) 

Find: H(X|Z) 

The estimation of the conditional entropy H(X|Z) is 

performed in the following steps. 

1) Calculate the entropy H(X) using p(x). 

2) Calculate the entropy H(Y) using p(y). 

3) Calculate the entropy H(X|Y) using p(x) and p(x, y). 

4) Calculate the entropy H(Y|Z) using p(x) and p(y, z). 

5) Calculate the entropy remaining rate  

 

 
 

6) Calculate the entropy difference 

 

D = H(X) – H(X|Y) 

 

7) H(X|Z) is estimated as H(X) – (1-R).D 

The entropy remaining rate R is the remaining value of the 

entropy of a random variable Y, given the value of the 

random variable Z. When the initial entropy of Y is 

normalized to 1, by getting the information, the entropy of Y 

is reduced from 1 to 1-R.  The entropy difference rate D is the 

reduced amount of information of X when Y is known.  So 

when Y is only partially known, the entropy of X is partially 

reduced as described. 

The proposed approach is tested against sets of inputs and 

the result is shown in the next section 

IV. RESULT 

The testing of the proposed approached is conducted by 

arbitrarily assign probabilities to three random variables X, Y, 

and Z and use the proposed algorithm to estimate the 

conditional entropy H(X|Z), pretending that the joint 

probability p(x, z)  is not known.  In the first test, the 

probabilities of the three variables are shown in table I. 

A. The First Test 

TABLE I: PROBABILITIES OF THREE VARIABLES 

Probabilities 

x = 0 0.5 y = 0 0.9 z = 0 0.9 

z = 1 0.1 

y = 1 0.1 z = 0 0.1 

z = 1 0.9 

x = 1 0.5 y = 0 0.1 z = 0 0.9 

z = 1 0.1 

y = 1 0.9 z = 0 0.1 

z = 1 0.9 

Using the proposed algorithm, we calculate the relevant 

values as the results shown below. 

H(X) = 1 

H(Y) = 1 

H(X|Y) = 0.468996 

H(Y|Z) = 0.468996 

D = 0.531004 

R = 0.468996 

Estimated H(X|Z) = 0.718034 

The estimation gives a reasonable entropy value as the 

actual entropy H(X|Z), calculated when the joint probabilities 

p(x, z) are used, is 0.680077, or about 5.58% overestimation. 

B. The Second Test 

The second test is conducted similar to the first one but 

with adjusted probabilities as in table II shown below. 

TABLE II: PROBABILITIES OF THREE VARIABLES 

Probabilities 

x = 0 0.4 y = 0 0.2 z = 0 0.4 

z = 1 0.6 

y = 1 0.8 z = 0 0.3 

z = 1 0.7 

x = 1 0.6 y = 0 0.8 z = 0 0.7 

z = 1 0.3 

y = 1 0.2 z = 0 0.5 

z = 1 0.5 

Using the proposed algorithm, we calculate the relevant 

values as the results shown below. 

H(X) = 0.970951 

H(Y) = 0.989588 

H(X|Y) = 0.703291 

H(Y|Z) = 0.923412 

D = 0.267659 

R = 0.933129 

Estimated H(X|Z) = 0.953052 

The estimation gives a reasonable entropy value as the 

actual entropy H(X|Z), calculated when the joint probabilities 

p(x, z) are used, is 0.889257, or about 7.17% overestimation. 

From both tests, it can be seen that the algorithm can 

estimate the entropy value of a random variable using only 

indirect conditional information.  The results are less than 

10% over the actual value. 
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C. Testing with Varying Probabilities of Two Variables 

When the probability of each value of X is fixed at 0.5,and 

the probability of each value of Y given X and Z given Y vary 

from 0.6-0.4 to 0.95-0.05, we found that the value of the 

entropy becomes more and more overestimated as in table III 

shown below. 

TABLE III: OVERESTIMATION WITH VARYING PROBABILITIES 

Probabilities 

(Y given X 

and 

Z given Y) 

Estimated 

H(X|Z) 

Actual 

H(X|Z) 

Overestimation 

(percent) 

0.6 – 0.4 0.999156 0.998846 0.031096 

0.7 – 0.3 0.985908 0.981454 0.453842 

0.8 – 0.2 0.922676 0.904381 2.022881 

0.9 – 0.1 0.718034 0.680077 5.58132 

0.95 – 0.05 0.490771 0.452943 8.351644 

D. Problems with More Than Three Random Variables 

This approach can be applied to a problem with more than 

three variables by calculating the reduction of the entropy 

proportionally.  However, the accuracy of the estimation tend 

to decrease as the number of random variables grows. 

 

V. CONCLUSIONS AND FUTURE WORKS 

We have proposed an approach to estimate the entropy of a 

discrete random variable when no direct conditional 

information is given.  The estimated result is close to the 

actual result that is calculated when the required joint 

probability value is given. 

Our future work is to adjust the approach by introducing 

some co-efficient to certain value in some steps of the 

algorithm, as from our experiment, the algorithm seems to 

always overestimate the entropy value.  
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