



Abstract—Software metrics is developed and used by the

various software organizations for evaluating and assuring

software code quality, operation, and maintenance. Software

metrics measure various types of software complexity like size

metrics, control flow metrics and data flow metrics. These

software complexities must be continuously calculated, followed,

and controlled. One of the main objectives of software metrics is

that applies to a process and product metrics. It is always

considered that high degree of complexity in a module is bad in

comparison to a low degree of complexity in a module. Software

metrics can be used in different phases of the software

development lifecycle. This paper reviews the theory, called

“software complexity metrics”, and analysis has been done

based on static analysis. We try to evaluate and analyze

different aspects of software metrics in structural testing which

offers of estimating the effort needed for testing.

Index Terms—Software metrics, lines of code, control flow

metrics, NPATH complexity, structural testing.

I. INTRODUCTION

The Software complexity is based on well-known software

metrics, this would be likely to reduce the time spent and cost

estimation in the testing phase of the software development

life cycle (SDLC), which can only be used after program

coding is done. Improving quality of software is a

quantitative measure of the quality of source code. This can

be achieved through definition of metrics, values for which

can be calculated by analyzing source code or program is

coded. A number of software metrics widely used in the

software industry are still not well understood [1]. Although

some software complexity measures were proposed over

thirty years ago and some others proposed later. Sometimes

software growth is usually considered in terms of complexity

of source code. Various metrics are used, which unable to

compare approaches and results. In addition, it is not possible

or equally easy to evaluate for a given source code [2].

Software complexity, deals with how difficult a program is to

comprehend and work with [3]. Software maintainability [3],

is the degree to which characteristics that hamper software

maintenance are present and determined by software

complexity. There dependencies are shown in Fig. 1.

This paper presents an analysis by which tester/developer

can minimize software development cost and improve testing

efficacy and quality

Manuscript received August 16, 2012; revised September 28, 2012.

The authors are with the Department of Computer Science & Engineering,

National Institute of Technology, Agartala, Tripura, INDIA, PIN 799055,

India (e-mail: mrinal@nita.ac.in).

Fig. 1. Relationship between software complexity metrics and software

systems

II. PROBLEM STATEMENT

From software engineering point of view software

development experience shows, that it is difficult to set

measurable targets when developing software products.

Produced/developed software has to be testable, reliable and

maintainable. On the other side, “You cannot control what

you cannot measure” [4]. In software engineering field

during software process, developers do not know if what they

are developing is correct and guidance are needed to help

them accustom more improvement. Software metrics are

facilitating to track software enhancement. Various industries

dedicated to develop software, and use software metrics in a

regular basis. Some of them have produced their own

standards of software measurement, so the use of software

metrics is totally depending upon industry to industry. In this

regards, what to measure is classified into two categories,

such that software process or software product. But

ultimately, main goal of this measure is customer satisfaction

not only at delivery, but through the whole development

process.

III. BACKGORUND AND RELATED WORK

A. Software Metrics

Software metrics is defined by measuring of some property

of a portion of software or its specifications. Software metrics

provide quantitative methods for assessing the software

quality. Software metrics can be define as: "The continuous

application of measurement-based techniques to the software

development process and its products to supply meaningful

and timely management information (MI) together with the

use of those techniques to improve its products and that

process" [5].

A Review and Analysis of Software Complexity Metrics in

Structural Testing

Mrinal Kanti Debbarma, Swapan Debbarma, Nikhil Debbarma, Kunal Chakma, and Anupam Jamatia

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

129

B. Software Complexity

Software complexity, deals with how difficult a program is

to comprehend and work with [3]. Software maintainability

[3], is the degree to which characteristics that hamper

software maintenance are present and determined by

software complexity. Software complexity is based on

well-known software metrics.

Various software complexity metrics invented and can be

categorized into two types:

1) Static metrics

Static metrics are obtainable at the early phases of software

development life cycle (SDLC).

These metrics deals with the structural feature of the

software system and easy to gather.

Static complexity metrics estimate the amount of effort

needed to develop, and maintain the code.

2) Dynamic metrics

Dynamic metrics are accessible at the late stage of the

software development life cycle (SDLC). These metrics

capture the dynamic behavior of the system and very hard to

obtain and obtained from traces of code.

C. Software Complexity Measures: Attributes

Software complexity metrics can be distinguished by the

attributes used for measurement. In this paper, we are

concentrating on static measure which can be classified into

three types:

1) Size based metrics

Size is one of the most essential attributes of software

systems [6]. It controls the expenditure incurred for the

systems both in man-power and budget, for the development

and maintenance. These metrics specify the complexity of

software by size attributes and helps in predicting the cost

involvement for maintaining the system. Size based metrics

measures the actual size of the software module. Metrics is

originated from the basic counts such as line numbers,

volume, size, effort, length, etc.

2) Control flow based metrics

Control flow based metrics measures the

comprehensibility of control structures. These metrics also

confine the relation between the logic structures in program

with its program complexity. These metrics are originated

from the control structure of a program [3].

3) Data flow based metrics

Data flow based metrics measure the usage of data and

their data dependency (visibility of data as well as their

interactions) [3].

Structural testing criteria consider on the knowledge of the

internal structure of the program implementation to derive

the testing criteria. Test cases are generated for actual

implementation, if there is some change in implementation

then it leads to change in test cases. They can be classified as,

complexity, control flow and data flow based criteria. The

complexity based criterion requires the execution of all

independent paths of the program; it is based on McCabe’s

complexity concept [7]. For the control flow based criteria,

testing requirements are based on the Control Flow Graph

(CFG). It requires the execution of components (blocks) of

the program under test in condition of subsequent elements of

the CFG i.e. nodes, edges and paths. Another method is

number of unit tests needed to test every combination of

paths in a method. In Data Flow based criteria, both data flow

and control flow information are used to perform testing

requirements. These coverage criteria are based on code

coverage. Code coverage is the degree to which source code

of a program has been tested. Test coverage is measured

during test execution. Once such a criterion has been selected,

test data must be selected to fulfill the criterion.

 TABLE I: SUMMARIZED SOFTWARE METRICS ARE SHOWN IN.

Type Metrics Description Merit &

 De-merits

 Size

Metrics

(Program

Size)

Lines of Code

(LOC),

Token Counts

(TC),

Function Points

(FP),

Halstead’s

software

science (HSS)

Metrics based on

program size,

amount of lines of

code,

declarations,

statements, and

files.

Halstead’s metrics

are based on count

of unique number

of operators and

operands in a

program.

Easy to

understand;

fast to count,

program

language

independent

and widely

applicable.

No need of

deep analysis

of program’s

logic

structure. In

contrast

ignores the

complexity

from the

control flow.

Control

flow based

metrics

 (Program

Control

Structure)

McCabe’s

Cyclomatic

Complexity

(MCC), Conte’s

Average

Nesting Level,

(CANC),

 NPATH

Complexity

(NC)

Metrics based on

control structure

of the program or

control flow graph

(CFG) and density

of control within

the program

Measure acyclic

execution path

through a

program.

Ignores the

complexity

from the data

flow of the

program and

Complexity

added by the

nesting levels.

Do not

distinguish the

complexities

of various

kinds of

control flow.

Data Flow

based

metrics

Chung’s live

definition

Metrics is based

on use of data

within a program.

 Intra and inter

module’s data

dependency

complexity

Complexity of software is measuring of software code

quality; it requires a model to convert internal quality

attributes to code reliability. High degree of complexity in a

component like function, subroutine, object, class etc. is

consider bad in comparison to a low degree of complexity in

a component. Software complexity measures which enables

the tester to counts the acyclic execution paths through a

component and improve software code quality. In a program

characteristic that is one of the responsible factors that affect

the developer’s productivity [8] in program comprehension,

maintenance, and testing phase. There are several methods to

calculate complexity measures were investigated, e.g.,

Nesting Level [6], different version of LOC [8], NPATH [9],

McCabe’s cyclomatic number [10], Data quality [10],

Halstead’s software science [11], Function Points[12], Token

Counts[11], Chung’s live definition [13] etc.

IV. CLASIFICATION OF SOFTWARE METRICS

Software metrics are useful to the software process, and

product metrics. Various classification of software metrics

are as follows:

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

130

1) Software Process metrics

2) Software Product metrics

A. Software Process Metrics

Software process metrics involves measuring of properties

of the development process and also known as management

metrics. These metrics include the cost, effort, reuse,

methodology, and advancement metrics. Also determine the

size, time and number of errors found during testing phase of

the SDLC.

B. Software Product Metrics

Software process metrics involves measuring the

properties of the software and also known as quality metrics.

These metrics include the reliability, usability, functionality,

performance, efficacy, portability, reusability, cost, size,

complexity, and style metrics. These metrics measure the

complexity of the software design, size or documentation

created.

1) Size metrics: Lines of code

The size of the program indicates the development

complexity, which is known as Lines of Code (LOC). The

simplest measure of software complexity recommended by

Hatton (1977). This metric is very simple to use and measure

the number of source instruction required to solve a problem.

While counting a number of instructions (source), line used

for blank and commenting lines are ignored. The size,

complexity of today’s software systems demands the

application of effective testing techniques. Size attributes are

used to describe physical magnitude, bulk etc. Lines of code

and Halstead’s software science [11] are examples of size

metrics. M. Halstead proposed a metrics called software

science.

2) Control flow metrics: NPATH complexity [9]

The control flow complexity metrics are derived from the

control structure of a program. The control flow measure by

NPATH, invented by Nejmeh [9] it measures the acyclic

execution paths, NPATH is a metric which counts the

number of execution path through a functions. NPATH is an

example of control flow metrics.

One of the popular software complexity measures NPATH

complexity (NC) is determined as:

Execution of Path Expressions (complexity expression)

are expressed, where “N” represents the number of

statements in the body of component (function and “NP

(Statement)” represents the acyclic execution path

complexity of statement i. where “(expr)” represents

expression which is derived from flow-graph representation

of the statement. For example NPATH measure as follows:

Void func-if-else (int c)

{

 int a=0;

 if(c)

 {

 a=1;

 }

 else

 {

 a=2;

 }

 }

The Value of NPATH = 2 as follows:

NP (if-else)=NP(expr)+NP(if-range)+NP(else-range)

In the above example, NP (exp)=0 for if statement.

NP (If-range)=1 for if statement and , NP(else-range)=1

for if-else statement. So, NP (if-else)=0+1+1=2.

NPATH, metric of software complexity overcomes the

shortfalls of McCabe’s metric which fail to differentiate

between various kinds of control flow and nesting levels

control structures.

3) Mc cabb’e cyclomatic complexity [10]

Cyclomatic Number is one of the metric based on not

program size but more on information/control flow. It is

based on specification flow graph representation developed

by Thomas J Mc Cabb in 1976. Program graph is used to

depict control flow. Nodes are representing processing task

(one or more code statement) and edges represent control

flow between nodes. McCabe’s metrics [7] is example of

control flow metrics. To compute Cyclomatic Number by V

(G) as following methods:

V (G)=E – N + 2P

where, V (G)= Cyclomatic Complexity

E= the number of edges in a graph

N= the number of nodes in graph

P= the number of connected components in graph,

We can compute the number of binary node (predicate), by

the following equation.

V (G)= p+1

where, V(G)= Cyclomatic Complexity

P= number of nodes or predicates

The problem with McCabb’s Complexity is that, it fails to

distinguish between different conditional statements (control

flow structures). Also does not consider nesting level of

various control flow structures. NPATH, have advantages

over the McCabb’s metric [12].

4) Halstead software science complexity

M. Halstead’s [11] introduced software science measures

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

131

NPATH= 𝑁𝑃(𝑖=𝑁
𝑖=1 statementi)

NP(if)=NP(expr)+NP(if-range)+1

NP(if-else)=NP(expr)+NP(if-range)+NP(else-range)

NP(while)=NP(expr)+NP(while-range)+1

NP(do-while)=NP(expr)+NP(do-range)+1

NP(for)=NP(for-range)+NP(expr1)+NP(expr2)+

NP(expr3)+1

NP(”?”)=NP(expr1+NP(expr2)+NP(expr3)+2

NP(repeat)=NP(repeat-range)+1

NP(switch)=NP(expr)+ 𝑁𝑃(𝑐𝑎𝑠𝑒 − 𝑟𝑎𝑛𝑔𝑒)𝑖=𝑛
𝑖=1 +

NP(default-range)

NP(function call)=1

NP(sequential)=1

NP(return)=1

NP(continue)=1

NP(break)=1

NP(goto label)=1

NP(expressions)=Number of && and || operators in

Expression

for software complexity product metrics. Halseatd’s software

science is based on a enhancement of measuring program size

by counting lines of code. Halstead’s metrics measure the

number of number of operators and the number of operands

and their respective occurrence in the program (code). These

operators and operands are to be considered during

calculation of Program Length, Vocabulary, Volume,

Potential Volume, Estimated Program Length, Difficulty,

and Effort and time by using following formulae.

n1 = number of unique operators,

n2 = number of unique operands,

N1 = total number of operators, and

N2 = total number of operands,

a) Program Length (N) = N1+N2

b) Program Vocabulary (n) = n1+n2

c) Volume of a Program (V) = N*log2n

d) Potential Volume of a Program (V*)=(2+n2)log2(2+n2)

e) Program Level (L) = L=V*/V

f) Program Difficulty (D) = 1/L

g) Estimated Program Length (N) = n1log2n1+n2log2n2

h) Estimated Program Level (L) = 2n2/(n1N2)

i) Estimated Difficulty (D) = 1/L = n1N2/2n2

j) Effort (E) = V/L = V*D = (n1 x N2) / 2n2

k) Time (T) = E/S [“S” is Stroud number (given by John

Stroud), the constant “S” represents the speed of a

programmer. The value “S” is 18]

One major weakness of this complexity is that they do not

measure control flow complexity and difficult to compute

during fast and easy computation.

V. STATIC ANANYSIS

Our analysis is based on static analysis of software

complexity metrics like size and control flow metrics. We

have considered four program characteristics from the

literature that are responsible for complexity measures. e.g.,

LOC, NC, MCC, and HSSC. For this study, we have selected

only program written in C language given in Fig. 2. We have

measured LOC, NPATH i.e. acyclic execution paths through

components for in an attempt at program optimization,

McCabe complexity and finally Halstead’s software science

complexity metrics. Statics analysis of metrics is not directly

associated to the execution of programs (source code). There

are three aspects can be affect maintenance of program, like

program volume/size, data organization, and control

structure.

While counting a number of instructions (source), line

used for blank and commenting lines are ignored. NPATH

measures the acyclic execution paths which counts the

number of execution path through a functions. Halstead’s

metrics measure the number of number of operators and the

number of operands and their respective occurrence in the

program (code). These operators and operands are to be

considered during calculation of Program Length,

Vocabulary, Volume, Potential Volume, Estimated Program

Length, Difficulty, and Effort and time. For McCabb’s

complexity measures program graph is used to depict control

flow. Nodes are representing processing task (one or more

code statement) and edges represent control flow between

nodes

TABLE II: CALCULATION OF THE COMPLEXITY MEASURES FROM PROGRAM

P

LOC NC MCC HSSC

35

24

Nodes

15

n1 15

n2 8

Edges

19

N1 56

N2 40

Pred.

Nodes

5

Vocabu

Lary

434

Estt.

Program

Length

82.6

Regions

5

Difficulty 37.5

Effort 16275

V(G)

6 Time 904.16

Consider an example, Let P be the source program in C

given below:

Consider a program from fig. 2, the complexity measured

by us and computed the complexity of the other proposed

measures i.e Lines of Code (LOC), NPATH Complexity

(NC), McCabb’s complexity (MCC) and Halstead’s software

science complexity (HSSC) are shown in Table II.

Fig. 2. Source program.

VI. CONCLUSION

Software complexity metrics have a tendency to be used in

judging the quality of software development and one of the

vital parts of the SDLC. The volume, control and data based

complexity are importance of today’s software systems

demand the application of effective testing techniques. In

addition, it was observed that software complexity metrics

which enables the tester to counts the acyclic execution paths

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

132

through a program and improve software quality. This static

analysis could be lead to reduce software development cost

and improve testing efficacy and software quality by

evaluating software complexity metrics with LOC, NPATH

(NC), McCabb’s complexity metrics (MCC) and Halstead’s

Software Science Complexity (HSSC).

REFERENCES

[1] T. J. M. Cabe, “A complexity measure,” IEEET Ransactions on

Software Engineering, vol. 2, 1976

[2] I. Herraiz, J. M. G. Barahona, and G. Robles, “Towards a theoretical

model for software growth,” in 29th International Conference on

Software Engineering Workshops (ICSEW'07).

[3] W. Harrison, K. Magel, R. Kluczny, and A. Dekok, Applying

Software Complexity Metrics to Program Maintenance Compute, vol.

15, pp. 65-79, 1982.

[4] T. D. Marco, “Controlling software projects,” Prrntice Hall, New

York, 1982.

[5] J. Verner and G. Tate, “A software size model,” IEEE Transaction on

Software Engineering, vol. 18, no. 4, 1992.

[6] W. Harrision and L. I. Magel, “A complexity based on nesting level,”

Sigplan Notice, vol. 16, no. 3, 1981.

[7] A. Fitzsimmons and T. Love, “A review and evaluation of software

science,” Computing Survey, vol. 10, no. 1, March 1978.

[8] S. D. Conte, H. E Dunsmore, and V. Y. Shen, “Software engineering

metrics and models,” Benjamin/Cummings Publishing Company, Inc.,

1986.
[9] B. A. Nejmeh, “NPATH: A measure of execution path complexity and

its applications,” Comm. of the ACM, vol. 31, no. 2, pp. 188-210,

February 1988.

[10] T. A. McCabe, “A complexity measure,” IEEE Transactions on

Software Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[11] M. Halstead, Elements of Software Science. North Holland, 1977.

[12] E. E. Millis, “Software metrics,” SEI Curriculam Module SEI- CM. vol.

12, no. 2.1, Dec, 1988.

[13] C. M Chung and M. G Yang, “A software maintainability

measurement,” Proceedings of the 1988 Science, Engineering and

Tech. Houston, Texas, pp. V12-16.

Mrinal Kanti Debbarma was born in Tripura in

1972, Presently working as Assistant Professor at

Computer Science and Engineering Department of

National Institute of Technology Agartala, India, he

received the B.Tech (IET, Lucknow), M.Tech

(MNNIT, Allahabad), currently pursuing

Ph.D.(Information Technology) at Assam University.

His research interest include in Software Engineering

with special interest in Software metrics analysis and

Regression testing, MANET Routing Protocols, Wireless Sensor

Networks. He has 12 years of academic and 5 years Industrial experience.

Mr. Debbarma is a member of IAENG, IACSIT. email: mrinal@nita.ac.in.

Swapan Debbarma obtained his B.Tech degree in

Computer Science and Engineering in 2000 from

NERIST (North Eastern Regional Institute of

Technology, Deem University, AP, India).In 2010,

M.Tech degree in the same field of Engineering from

Tripura University and pursuing his PhD degree from

NIT, Agartala in the field of Nanotechnology under the

supervision of Professor K. P. Ghatak. He published

more than a dozen research papers in International

peer-reviewed. He joined as Lecturer in 2002 (Then Tripura Engineering

College) and Assistant Professor 2006 in the Department of Computer

Science and Engineering NIT.

Nikhil Debbarma is an Assistant Professor at the

Computer Science and Engineering Department of

National Institute of Technology, Agartala, India. He

received his B.E. in Computer Science and

Engineering at REC Jalandhar, India and M.Tech. in

Computer Science and Engineering at National

Institute of Technology, Agartala, India. His research

interests include OS, Database, Graph Theory,

Algorithm.

Kunal Chakma is an Assistant Professor at the

Computer Science and Engineering Department of

National Institute of Technology, Agartala, India. He

received his B.E. in Computer Science and

Engineering at REC Jalandhar, India and Currently

Pursuing M.Tech. in Computer Science and

Engineering at National Institute of Technology,

Agartala, India. His research interests include Systems

Software, Operating Systems, Real-Time Operating

Systems, Distributed Systems, Linux.

Anupam Jamatia is an Assistant Professor at the

Computer Science and Engineering Department of

National Institute of Technology, Agartala, India. He

received his B.E. in Computer Science and

Engineering at University College of Engineering,

Burla, Orissa, India in May 2000 and Currently

Pursuing M.Tech. in Computer Science and

Engineering at National Institute of Technology,

Agartala, India. His research interests include Routing

Protocol in Wireless Networking and Mobile Computing. He is a member of

IEEE.

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

133

