
  

 

Abstract—Component Configuration Management became 

very important and significant in Software Configuration 

Management discipline. By the passage of time we have seen 

that a lot of work was done for the improvement. During the 

Component Configuration Management there are certain 

problems faced by stakeholder such as version management, 

conflict of new and old components, change impact analysis, 

historical view and ripple impact identification 

In this paper our main focus remains on identification of 

requirements for Components Configuration Management, we 

thoroughly reviewed the literature and after analyzing the 

problem, we have identified and defined three key 

requirements. 

 
Index Terms—Component, configuration, management.  

 

I. INTRODUCTION 

Configuration Management is not only critical and 

important step in the engineering process of a system; it has 

same importance as well in the life of a system. The ultimate 

objective of configuration management (CM) is to establish 

and maintain integrity.[1] 

To ensure integrity, components should be properly 

defined and documented; components should have enough 

information that not only integrate it with other components, 

but can also provide traceability, which can help us to 

identify how components are functioning in a system.[1] 

According to the Pressman, Software Configuration 

Management (SCM) is “Set of activities designed to control 

change by identifying the work products that are likely to 

change, establishing relationships among them, defining 

mechanisms for managing different versions of these work 

products, controlling the changes imposed, and auditing and 

reporting on the changes made”[2]. 

Main discipline of SCM are Version Management, 

Configuration Management and Change Management.[2] 

The discipline of configuration management (CM) is 

concern with the management of artifacts, software which are 

integrated in a software system. Artifacts are evaluated and 

then suggested changed configurations are either 

incorporated or discarded.[2] 

Mainly SCM is used to eradicate the puzzlement and 

uncertainty among different components/ versions of 

artifacts / software. In real life it is possible that in a project 

when different people are working together and creating 

 
Manuscript received August 6, 2012; revised October 7, 2012. 

The authors are with the Mohammad Ali Jinnah University, (MAJU), 

Islamabad, Pakistan (e-mail: i4imran@mail.com, 

asifparacha786@gmail.com, saqibafzal@gmail.com, 

shahzad@jinnah.edu.pk). 

different versions of the same artifact then at the time of 

configuration we may have wrong version of an artifact/ 

component.  So to avoid such mistakes there should be a 

proper mechanism to define a component.  

There are several tools/ techniques available for SCM 

during Software Development Life Cycle (SDLC), but a little 

work is performed actually in the area of Component 

Configuration Management (CCM). 

The objective of the said paper is to highlight the 

significance and importance of Requirement Engineering 

(RE) for CCM as well as the dimensions for RE that are 

concern with CCM 

Rest of the paper consists of following Sections. Section 2, 

is about literature review, Section 3 highlights and defines 

requirements for CCM, and Section 4 describes conclusion 

and future work. 

 

II. LITERATURE REVIEW 

After thoroughly reviewing the literature it was found that 

although the importance and significance of the CCM was 

realized and different authors have highlighted different 

issues which should be cater as a part of CCM but no one has 

provided any fundamental methodology to cater the 

highlighted problems.  

Pilatti L. et al. [3] addressed the different challenges and 

problems of SCM in distributed environment. Authors 

recommended that inter-dependency between globally 

distributed teams should be minimum. To overcome 

synchronization and change management issues, all teams 

must define the main concepts with clarity and detail, and 

placed all the configuration items on a centralized & single 

instanced SCM environment. All SCM activities must be 

well planned, documented and prioritized as project evolved. 

Their work showed that the configuration of items is an 

important issue [3]. 

Bendix L. et. al. [4] explained and elaborated the vital role 

and importance of SCM activity during requirement 

engineering and suggested a return of investment (ROI) 

model and metrics. Authors summarized the key SCM 

activities as Configuration Identification to record and 

identify configuration items, Configuration control: for 

changes traceability and management, Accounting and Audit 

for reporting and verification. It is recommended by the 

authors that SCM method and principles must be applied 

during all phases, however, no explicit formula or metrics has 

been given for ROI calculation [4]. 

Volzer H. et al. [5] introduced a hierarchical Model for 

software configuration and change management on software 

development artifacts and built a prototype called subCM. 

Key Requirements for Component Configuration 

Management (CCM) 

Imran Ali Qureshi, Asif Iqbal Paracha, Saqib Afzal, and Shahzad Rafiq 

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

94



  

The method is capable to define and store subsystem 

configuration specification (SCS) or a short textual summary 

e.g. what artifacts were produced in what subsystem, the 

change description by describing change item, its type, 

baseline reference and version comparison by comparing 

two/more parallel or adjacent versions. A case study of 

interfacing subCM prototype with telelogic and synergy 

toolset CM, its results and experienced were also discussed 

[5]. 

Carnduff T. W. et al. [6] proposed a model by the name of 

Configuration Management Model through which 

configuration changes are cater as versions. The proposed 

system facilitates to manage and overcome the difficulties 

faced during the configuration [6], but still no concrete 

measurement are proposed for component configuration 

management.  

Mao M. and Jiang Y. [7] proposed the 3C Model which is 

an outcome of the research of CMMI and IEEE criterion. 3C 

Model is actually based on component-based and layered 

architecture. Authors’ proposed model is divided into three 

layers, at the lowest level is Control layer, then Configuration 

layer and on the highest level is Component layer that is the 

reason it was named as 3C Model. Authors claimed that 

among the available other configuration models their 

proposed model is most suitable for component-based 

configuration because their model is structurally layered and 

follows component-based CM scheme while other uses 

file-based CM scheme. This paper is about 3C Model and its 

realization, although the authors have very nicely elaborated 

and described their proposed model but they have not 

provided any pre-requisites for components rather this paper 

aims to provide a good framework but it is revealed that 

component configuration management is very important and 

needs special attention at every level. 

Estublier J. et al. [9] highlighted the significance of SCM 

and point out different issues and treated them as challenges 

for SCM, such as software versioning, configuration control, 

consistency, data modeling, versioning in component 

repository, etc.. authors has just given a road map for the 

better SCM by identifying certain challenges that should be 

overcome [9]. 

Larsson M. et al. [10], [11], [12], [14] and Crnkovic I. et al. 

[13] have highlighted the importance of CCM and point out it 

as a new challenge. Authors’ contribution is significant in 

this manner that first time they suggested that at run time 

there should be component configuration and also said that 

this should be treated as a new discipline in SCM [8], [10], 

[14]. The major issue which was highlighted by the authors is 

managing component dependencies [12]. 

Crnkovic I. and Larsson M. have done a lot in identifying 

the new challenges and issues which are specific to the CCM 

[8], [12], [14], [15]. 

We have identified three key requirements that are 

necessary for CCM, which we have explained in Section 3. 

 

III. REQUIREMENTS FOR CCM 

CCM’s objective is to curtail the problems such as: version 

management, conflict of new and old components, change 

impact analysis, historical view and ripple impact 

identification, which are related between components and the 

rest of the system. This objective is very well highlighted by 

Larsson M. and Crnkovic I. [12] as shown in Fig. 1. 

 

Fig. 1. Components relationship [9] 

For CCM first of all we should know what are the 

necessary requirements for the CCM, for this purpose after 

reviewing the existing literature as mentioned in Section 2, 

and prevailing practices being adopted by the developers and 

designers we have identified, three key Functional 

Requirements (FR), as shown in Fig. 2. These FR act as 

catalyst for the CCM. 

 
Fig. 2. Key requirements of CCM. 

A.  FR1: Describe Component  

There should be a systematic and organize way to describe 

a component. A lot of method for describing anything can be 

adopted. The simplest way could be xml but one can describe 

according to their suited environment.  

The description will contain the complete information 

about a component like, the type of component, component 

interfaces, input/ output recursively, component environment, 

etc.. It will be editable and can be written at any time in any 

phase like at the time of designing phase, developing phase or 

even at the time of just before component configuration. 

B.  FR2: Maintain Component History  

This requirement is directly concern with versioning of a 

component. It will maintain the history of a component on the 

basis of its versions. The history of a component will clearly 

identify the change in a component since its first version.  

Component history will highlight every change either it is 

a minor or it is a major. 

Component history will identify elements like component 

version number, author of a component, the description of a 

specific version of a component, etc.. 

C. FR3: Compare Component  

This requirement will compare different versions of a 

component. The comparison of different versions of a 

component will highlight different aspects, as we shown with 

the help of Venn diagram in Fig. 3(a), Fig. 3(b) and Fig. 3(c). 

Key Requirements  

for CCM 

FR1:  

Describe 

Component 

FR2:  

Maintain 

Component History 

FR3: 

Compare 

Component 

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

95



  

A = earlier version of a component 

Á  = modified version of a component 

A          Á 

 

 

 

 

 

 

Fig. 3(a). 

A ∩ Á = Common features which are available in 

both the earlier version and in the 

modified version of a component. 

A          Á 

 

 

 

 

 

 

Fig. 3(b). 

A - Á = Features which were available in earlier 

version but not-available in the modified 

version of a component. 

A          Á 

 

 

 

 

 

 

 

Fig. 3(c). 

Á - A = Features which are available in modified 

version but not-available in the earlier 

version of a component. 

 

IV. CONCLUSION AND FUTURE WORK 

We have thoroughly reviewed the literature and after 

analyzing the problem, we have identified and defined three 

key requirements for component configuration management, 

i.e., component description, maintain history, and ability to 

compare two components. 

The role of a unified system for component configuration 

management is vital and our contribution, to identify the key 

requirements, is significant for such system. 

This System is useful for software designers, developers, 

configuration managers and third party component providers. 

In future work we shall develop a prototype to implement 

our proposed work. 

 

 

 

  

 

  

 

 

        

    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

96

[6] T. W. Carnduff and J. S. Goonetillake, “Configuration management in 

evolutionary engineering design using versioning and integrity 

constraints,” Advances in Engineering Software, vol. 35, no. 3-4, pp. 

161- 177, March-April 2004.

[7] M. Mao and Y. Jiang, “A New Component-Based Configuration 

Management 3C Model and its Realization,” ISISE, International 

Symposium on Information Science and Engineering, vol. 1, pp.

258-262, 2008

[8] I. Crnkovic, “Component-based software engineering – new challenges 

in software development,” in Proceedings of the 25th International 

Conference on Information Technology Interfaces, (ITI 2003), June 

2003, pp. 9-18

[9] J. Estublier, “Software configuration management: A roadmap,” in 

Proceedings of 22nd International Conference on Software 

Engineering, The Future of Software Engineering, ACM Press, 2000.

[10] M. Larsson, “Applying configuration management techniques to 

component-based systems,” Licentiate Thesis Dissertation 2000, 

Department of Information Technology Uppsala University, vol. 7, 

2000.

[11] M. Larsson and I. Crnkovic, “Development experiences of a 

component-based system,” 7th IEEE International Conference and 

Workshop on the Engineering of Computer Based Systems (ECBS 

2000).

[12] M. Larsson and I. Crnkovic, “Component configuration management,”

in Proceedings of ECOOP Conference, Workshop on Component 

Oriented Programming Nice, France, June 2000.

[13] I. Crnkovicand and M.Larsson, “The different aspects of component 

based software engineering,” in Proceedings MIPRO (Microprocessor 

systems, Process control and Information Systems) Conference Opatija,

Croatia, May 2000.

[14] R. S. Pressman, Software engineering: A practitioner's approach, 6th

Edition, 2005.

[15] I. Crnkovic and M. Larsson, “Challenges of component-based 

development,” Journal of Software Systems (Elsevier Science Home), 

2001.

REFERENCES

[1] Freeway management and operations handbook, FHWA Report No.: 

FHWA-OP-04-003, EDL No.: 13875, Final Report, September 2003

[2] M. Larsson and I. Crnkovic, “New challenges for configuration 

management,” in Proceedings of 9th Symposium on System 

Configuration Management, Lecture Notes in Computer Science, 

Springer Verlag, no. 1675, 1999.

[3] L. Pilatti et al., “Software configuration management over a global 

software development environment: Lessons learned from a case 

study,” in Proceedings of International Conference on Software 

Engineering (ICSE’06), Shanghai, China, May 2006, pp. 45 - 50.

[4] L. Bendix and L. Borracci, “Towards a suite of software configuration 

management metrics,” in Proceedings of the 12th international 

workshop on Software configuration management, 2005, pp. 75 - 82.

[5] H. Volzer, A. MacDonald et al., “Sub CM: A tool for improved 

visibility of software change in an industrial setting,” Software 

Engineering, IEEE Transaction, vol. 30, no. 10, pp. 675 - 693, October 

2004.


