

Abstract—Tacit knowledge generates ambiguous,

inappropriate and incomplete requirements, so it is extremely

important do a good job on gathering meaningful requirements

in order to obtain tailored high quality software. In this paper, a

requirements engineering process model is presented, which

has the aim of minimize the percentage of ambiguous,

incomplete and not appropriate requirements and thus impact

on software-solution quality, especially in domains where tacit

knowledge has great relevance.

Index Terms—Requirements engineering, informal

structured domains, tacit knowledge.

I. INTRODUCTION

According to Easterbrook, "Requirements Engineering is a

set of activities concerned with identifying and

communicating the purpose of a software-intensive system,

and the contexts in which it will be used. Hence, RE acts as

the bridge between the real-word needs of users, customers,

and other constituencies affected by a software system, and

the capabilities and opportunities afforded by

software-intensive technologies" [1].

This definition is interesting because reflect that a software

system is an abstraction of a machine that interacts with a

domain, as an organization, a physical or a technical world.

The intersection between the phenomena of the machine and

the world generates three concepts that should be

distinguished: requirements (things in the world that

stakeholders would like to achieve), specifications

(descriptions of what the system being designed should do if

it is to meet the requirements) and programs (descriptions of

the properties and behaviours that, ultimately, satisfy

customers) [2].

Under this perspective, Easterbrook classifies the types of

software according to the interconnection of the software

system to human activity. On one side of the spectrum are

applications such as compilers and operating systems, with

little interaction with human activities. For this type of

system, requirements engineering has little or nothing to say

due to the stable functionality of these devices. On the other

side of the spectrum are software systems with a complex

interaction with human activities, such as information

systems or office automation systems. The development of

this kind of system changes the system of human activity in

which they are embedded and therefore, to understand human

activities is essential. Easterbrook introduces the term of

Software-Intensive System to describe this kind of systems

Manuscript received July 25, 2012; revised September 20, 2012.

The authors are with the Centro de Ingeniería de Software e Ingeniería del

Conocimiento, Universidad Autónoma de Ciudad Juárez (e-mail:

kolmos@uacj.mx, jorge.rodas@uacj.mx, lfernand@uacj.mx).

that incorporate hardware, software and human activities, in

which the requirements engineering is a key factor for the

successful development of the project. However, there are

other types of systems, such as Informal Structured Domains

(ISD) (section 2), in which it is not enough consider the

human activities but the knowledge of the people involved in

the domain.

This paper introduces a Requirements Engineering Process

Model for Informal Structured Domains. The process model

considers the application domain and includes formally to the

domain specialists, i.e. customers and users, to validate the

partial results. The aim of the Process Model is to minimize

the percentage of ambiguous, incomplete and not appropriate

requirements and thus impact on software-solution quality. In

Section 2, it will explain the Informal Structured Domains

and its impact on Requirements Engineering. In Section 3, a

Requirements Engineering Knowledge Flow Model will be

introduced, which is part of the proposed process model. In

Section 4, the original process model will be introduced.

Finally, discussion and future work will be presented in

Section 5.

II. INFORMAL STRUCTURED DOMAINS

A RE process always looks for a software solution attached

to reality. That is why it is preferable to work with the highest

amount of explicit knowledge. Several proposals to

Requirements Engineering focus on systematic, refined and

structured methods, such as Tropos [3], KAOS [4] and

Techne [5]; in Domains where requirements are extremely

clear and tacit knowledge has not enough relevance, these

proposals have been effective. However, critical expectations,

knowledge and needs of the stakeholders could frequently

remain hidden, and the specification and its software-solution

will not be adequate with users and/or customers’ needs. So,

it is generated additional cost and development time. Thus, it

is required systematic means to make explicit the tacit

knowledge (as much as possible) [6], especially if the

Domain is an Informal Structured Domain (ISD) [7]. When a

domain is ISD, it is important take into account the following

features:

 Not all concepts and their relationships are formally

defined, but rather these definitions tend to be based on

consensus.

 Solutions of the problems in these Domains are diverse,

consensus and unverifiable, and there are no algorithms

to reach these solutions.

 To obtain the solution of a problem, specialists generally

build a partial structure with the explicit knowledge.

Thus, large amounts of tacit knowledge are always

required to get an acceptable solution.

Requirements Engineering Process Model for Informal

Structural Domains

Karla Olmos, Jorge Rodas, and Luis Felipe Fernández

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

75

To develop software in Software-Intensive Systems it is

necessary adopt a human-centered design, which makes

human activities the focus of the design process. In ISD, it

should be considered, not only the human activities, but the

human knowledge, because of the great quantities of tacit

knowledge that should be externalized and because of the

development of this kind of system evolutes the knowledge

of all the people embedded in the project. But working with

human knowledge is not a trivial task, because it is personal,

contextual and limited to the perspective and the role that the

humans have about a domain. Namely, domain knowledge is

dispersed. Moreover, according to Polanyi [8], this

knowledge can be explicit or tacit. The first is related to

theoretical knowledge, facts and other elements on which

people are aware when thinking. On the other hand, tacit

knowledge refers to personal and context-specific knowledge,

which is hard to formalize and communicate.

Several authors have made proposals to minimize the

effects of tacit knowledge. Nonetheless, they are incomplete

or cost and time consuming. Nowadays, tacit knowledge in

RE is an open research problem. Pital and Kaindl [9] propose

a new perspective of RE based on knowledge management.

Although the authors are aware that the problem of share

knowledge in RE is not new, they suggest that this

perspective offers specific insights and techniques for

understanding and facilitating knowledge transfer and

transformation. This paper agrees with Pital and Kaindl’s

perspective but goes further by proposing a new process

model.

III. REQUIREMENTS ENGINEERING KNOWLEDGE FLOW

MODEL

Nonaka proposes a model of conversion of knowledge in

organizations based on Polanyi's definition of tacit

knowledge [10] and [11]. For Nonaka, knowledge creation in

an organization is the result of social interaction of tacit and

explicit knowledge. The model of Nonaka postulates four

iterative conversion modes: Socialization (process of

transferring tacit knowledge between individuals, by sharing

mental models and technical skills), Externalization (process

of converting tacit knowledge to explicit through the

development of models, protocols and guidelines),

Combination (process of recombining or reconfiguring

existing bodies of explicit knowledge to create new explicit

knowledge) and Internalization (process of learning by

repetition of tasks and applying explicit knowledge).

In this paper, a Knowledge Flow Model for Requirements

Engineering based on Nonaka’s work is proposed. The model

takes into account the following features of RE when it is

applied to an ISD:

 There is symmetry of ignorance between requirements

engineers and domain specialists, i.e. customers and

users.

 It requires an arduous work of negotiation.

 The requirements engineer generates models to

understand the properties of the domain and the system,

and to obtain the specifications.

 According to Easterbrook clients and users are the only

ones who can validate the system [1].

For the above, four states in a RE process were identified:

 Domain Knowledge Eduction (DKE). The objective of

this stage is that requirementsengineer educes domain

knowledge. In this stage, the socialization mode

predominates.

 Model Generation (MG). In this stage, requirements

engineers use the domain knowledge acquired in the

stage of Domain Knowledge Eduction, her own

knowledge of the machine and her experience to

generate models. This is a complex activity in which

combination and externalization modes are presented. In

addition, as the requirement engineers develop models

they internalize the domain knowledge.

 Model Discussion (MD). In this stage the models

developed by requirements engineers will be discussed

with the domain specialists. This phase takes place

through socialization.

 Model Validation (MV). In this stage the domain

specialists validate the generated models. To develop

this activity they must internalize the knowledge behind

models. To validate the model, a negotiation between the

stakeholders is required. This process leads to the

eduction of new domain knowledge, and then the cycle

starts again.

Fig. 1. Requirements engineering knowledge flow model.

On the bases of these states, a Knowledge Flow Model was

generated. The Fig. 1 depicts this model which is iterative.

The domain specialist is represented by an empty circle. The

requirements engineer is represented by a full circle. Every

socialization process is represented by these two circles

separated by an empty rectangle.

IV. A REQUIREMENTS ENGINEERING PROCESS MODEL FOR

ISD

In this section, it is proposed a process model of

Requirements Engineering with the aim to address the

problems caused by the intrinsic characteristics of ISD’s.

The process model follows a system perspective that consists

of three phases:

 Domain Modeling Phase (DM). In an ISD, the definition

of concepts is ambiguous; thus, the first step of the

process aims to understand the Domain properties. The

externalization of this knowledge will enable to achieve

a consensus among the stakeholder (even between the

customers and users), to minimize the symmetry of

ignorance and to minimize the loss of knowledge in the

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

76

subsequent stages of software development.

 System Modeling Phase (SyM). In an ISD,

understanding the software system and its effect on the

application domain takes on special importance because

of the characteristics of the activities, which depends on

the context, i.e. is situated. It is important to formalize

the system processes; therefore, the clients and users can

assess or improve their own understanding of the

domain.

 Software Modeling Phase (SwM). In this is the last phase

the artefacts developed in previous phases will be used to

derivate the document of specification.

Fig. 2. Requirements engineering process model for ISD.

To face the challenges of the ISD these phases are

combined according to the Knowledge Flow Model, as can

be observed in Fig. 2. The swimlanes in the Fig represent the

activities developed by the actors. In the first one are the

activities developed by the domain specialist, i.e. customers

and users. In the second one are the activities developed

manly by a socialization process. In the last one are the

activities developed by the requirements engineering, i.e. the

model generation. It is considered that every project begins

with an Initial Interview (II). In an ISD, the formulation of the

problem and its solution evolves in parallel; therefore, the

process model is evolutionary: as more knowledge is gained

about the domain, the requirements engineer can return to

earlier stages to refine the artefacts. That implies that the

artefacts could be developed in parallel.

V. DISCUSSION AND FUTURE WORK

This article joins others in placing the tacit knowledge as

the backbone for new proposals that facilitate the knowledge

transition between people involve in a project. This paper

also introduces an original Requirements Engineering

Process Model. This process was developed on the bases of

knowledge conversion model of Nonaka. The aim of the

process model is to incorporate systematically the domain

specialists in the process. In addition, our process model

requires that the requirements engineer share with the domain

specialists the models of the system to close the symmetry of

ignorance.

As future work, it is necessary to apply this process to

cases of study to verify their effectiveness and to improve it.

In the same way, it is being developed an application to

automate some tasks of the process.

REFERENCES

[1] S. Easterbrook, Requirements Engineering Course. Universityof

Toronto, 2005. [Online]. Available:

http://www.cs.toronto.edu/~sme/CSC2106S/

[2] A. V. Lamsweerde, “From Worlds to Machines,” in: B. Nuseibeh, P.

Zave, P. (eds.) Software Requirement and Design: the Work of Michael

Jackson, New Jersey: Good Friends Publishing. 2009, pp. 655-662.

[3] V. Bryl, P. Giorgini, and J. Mylopoulos, in: A. Ghose, G. Governatori,

R. Sadananda (eds.) Agent Computing and Multi-Agent Systems.

Lecture Notes in Artificial Intelligence, vol. 5044, Springer-Verlag,

Berlin, Heidelberg. 2009, pp. 243-254.

[4] A. van Lamsweerde, “Requirements engineering: from craft to

discipline,” in Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (SIGSOFT

'08/FSE-16). New York, NY, USA: ACM. 2008, pp. 238-249.

[5] I. Jureta, A. Borgida, N. Ernst, and J. Mylopoulos, “Techne: Towards a

new generation of requirements modeling languages with goals,

preferences, and inconsistency handling,” in the 18th IEEE

International Requirements Engineering Conference (RE '10).

Washington: IEEE Computer Society. 2010, pp. 115-124.

[6] R. Gacitua, L. Ma, B. Nuseibeh, P. Piwek, A. N. de Roeck, M.

Rouncefield, P. Sawyer, A. Willis, and H. Yang, “Making tacit

requirement explicit,” in the Second International Workshop on

Managing Requirements Knowledge (MARK '09). Atlanta: IEEE

Computer Society. 2009, pp. 40-44.

[7] K. Olmos, J. Rodas, and L. F. Fernández, “Pertinencia de la

formalización de dominios semi-formalmente definidos en el Análisis

inteligente de datos,” CULCyT: Cultura Científica y Tecnológica, vol.

40-41, pp. 71—93, 2010.

[8] M. Polanyi, “The tacit dimension,” Routledge and K. Paul Press, 1967.

[9] L. Pilat and H. Kaindl, “A knowledge management perspective of

requirements engineering,” in the Fifth International Conference

on Research Challenges in Information Science (RCIS), 2011, pp.

1-12.

[10] I. Nonaka and H. Takeuchi. The Knowledge Creation Company.

Oxford University Press, 1995.

[11] I. Nonaka, “Tacit knowledge conversion: Controversy and

advancement in organizational knowledge creation theory,” J.

Organizational Science, vol. 20, no. 3, pp. 635—652, 2009.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

77

