

Abstract—Formal verification of variant requirements has

gained much interest in the software product line (SPL)

community. Feature diagrams are widely used to model product

line variants. However, there is a lack of precisely defined

formal notation for representing and verifying such models.

This paper presents an approach to modeling and verifying SPL

variant feature diagrams using first-order logic. It provides a

precise and rigorous formal interpretation of the feature

diagrams. Logical expressions can be built by modeling variants

and their dependencies by using propositional connectives.

These expressions can then be validated by any suitable

verification tool. A case study of a Computer Aided Dispatch

(CAD) system variant feature model is presented to illustrate

the verification process.

Index Terms—Product line, reuse, first-order logic, variants.

I. INTRODUCTION

Software product line is a set of software intensive systems

sharing a common, managed set of features that satisfy the

specific needs of a particular market segment or missions and

that are developed from a common set of core assets in a

prescribed way [1]. The main idea of software product line is

to explicitly identify all the requirements that are common to

all members of the family as well as those that vary among

products in the family. Common requirements are easy to

handle but problem arises from the variant requirements.

Different variants might have dependencies on each other.

Tracing multiple occurrences of any variant and

understanding their mutual dependencies are major

challenges during domain modeling. While each step in

modeling variants may be simple but problem arises when the

volume of information grows. As a result, the impact of

variant becomes ineffective on domain model. Therefore,

product customization from the product line model becomes

unclear and it undermines the very purpose of domain model.

This paper presents our work-in-progress logic verification

approach for variant requirements of software product line. In

our earlier work [2] we have shown how a `Unified Tabular'

representation along with a decision table can be augmented

with feature diagram to overcome the hurdles of variant

management during an explosion of variant dependencies.

However, defining such table involves manual handling of

variants and hence, formal verification is not directly

admissible for such approach. This paper uses first-order

logic to represent product line variants and their

dependencies. First we use extended versions of UML to

Manuscript received July July 20, 2012; revised September 15, 2012.

The authors are with the Department of Computer Science and Engin

(e-mail: dshr@ewubd.edu).

model product line variants. The logical representation of the

feature model is then presented using propositional logic

allowing us to logically verify the models. We present a case

study of Computer Aided Dispatch (CAD)1 system product

line.

In the remainder of the paper, Section 2 gives an overview

of the CAD domain model and how variants of the CAD

domain are modeled. How UML can be used to model

variants using UML extensions is presented in Section 3. The

logical definitions of variant models and their dependencies

are presented in Section 4. Finally, we conclude our paper

and outline our future plans in Section 5.

II. CAD OVERVIEW

A Computer Aided Dispatch system (CAD) is a

mission-critical system that is used by police, fire and rescue,

health service, port operation, taxi booking and others. Fig. 1

depicts a basic operational scenario and roles in a Police

CAD system.

Fig. 1. Basic operational scenario in a CAD system for police

When an incident has occurred, a caller reports the incident

to the command and control center of the police unit. A Call

Taker in the command and control center captures the details

about the incident and the Caller, and creates a task for the

incident. There is a Dispatcher in the system whose task is to

dispatch resources to handle any incident. The system shows

the Dispatcher a list of un-dispatched tasks. The Dispatcher

examines the situation, selects suitable Resources (e.g. police

units) and dispatches them to execute the task. The Task

Manager monitors the situation and at the end, closes the task.

Different CAD members have different resources and tasks

for their system.At the basic operational level, all CAD

systems are similar. Some of the variants identified

in CAD domain are: (i) Call taker and dispatcher roles (ii)

1The CAD case study is adopted from Software Engineering Research

group, Computer Science, National University of Singapore,

http://xvcl.comp.nus.edu.sg/xvcl/cad/CAD.html

Formal Modeling of Product-Line Variant Requirements

Shamim Ripon, Sk. JahirHossain, Keya Azad, and Mehidee Hassan

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

71

Validation (iii) Un-dispatched task selection ruleetc.

A. Modeling Variants

Feature modeling is an integral part of the FODA method

and the Feature Oriented Domain Reuse Method (FORM) [4].

Features are represented in graphical form as trees. The

internal nodes represent the variation point and leaves

represent the values of the variation points, known as variants.

The root node of a feature tree always represents the domain

whose features are modeled. The remaining nodes represent

features which are classified into three types: Mandatory,

Optional, and Alternative. Mandatory features are always

part of the system. Optional features may be selected as a part

of the system if their parent feature is in the system.

Alternative features, on the other hand, are related to each

other as a mutually exclusive relationship. There are more

relationships between features. Or-feature [5] connects a set

of optional features with a parent feature, either common or

variant. Feature diagram also depicts the interdependencies

among the variants which describes the selection of one

variant depends on the selection of the dependency connected

variants. A CAD feature diagram is illustrated in Fig. 2.

III. MODELING VARIANTS IN UML

Feature models are widely used in domain analysis to

model the common as well as variant requirements of the

application domain. However, the semantics of a domain are

not fully expressed by feature models. As a result, there is a

need for other notations to support feature models which can

enhance the meaning of thedomain concept. The Unified

Modeling Language (UML), a standardized notation for

describing object-oriented models, can be used with feature

model to depict the domain concept properly.UML is

targeted at modeling single system rather than system

families. In order to use UML diagrams to represent the

model of the system family simple extension mechanisms [11]

of UML,namely stereotypes and tagged values are used here.

The stereotype <<variant>> designates a model element as a

variant and the tagged values are used to keep trace of the

models and their corresponding variant elements. It is

claimed that adding only thestereotype <<variants>> does

not represent the types of variants and proposed another

extension where thenotion of variation point is used to make

variation point visible in use case diagram, represented as a

triangleand variant is used to make variant in use cases

explicitly.

Fig. 2. CAD feature diagram with dependencies.

Fig. 3 illustrates the use case diagram added with variants

of „Create Task‟ activity. An exclude denotes that when one

feature is selected other related feature cannot be selected. A

requires relation indicates that when there is a relation from

one feature (source) to another (target), then if the source

feature is selected the target feature has to be selected as well.

UML activity diagrams are used to identify the workflow of

any activity. As use cases are the source of information for

creating activity diagrams, whenever there is change occurs

in use cases due to using <<include>> or <<extend>>, then

corresponding activity diagrams should be updated. The

activity diagram of creating a task is shown in Fig. 4.

Fig. 3. Create task Use case diagram with variants.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

72

Fig. 4. Create task activity diagram with variants.

IV. LOGIC REPRESENTATION

A feature model is a hierarchically arranged set of features.

The relationships between a parent (variation point) feature

and its child features (variations) are categorized as follows:

 Mandatory: A mandatory feature is included if its parent

feature is included.

 Optional: An optional feature may or may not be

included if its parent is included.

 Alternative: One and only one feature from a set of

alternative features are included when parent feature is

included.

 Optional Alternative: One feature from a set of

alternative features may or may not be included if parent

in included.

 Or: At least one from a set of or feature is included when

parent is included.

 Optional Or: One or more optional feature may be

included if the parent is included.
The logical notations of these features are defined in Fig. 5.

A feature model can be considered as a graph consists of a

set of sub-graphs. Each sub-graph is created separately by

defining a relationship between the variation point (𝑣𝑖) and

the variants (𝑣𝑖 .𝑗) by using the expressions shown in Fig. 5.

For brevity, a partial feature graph is drawn from CAD

feature model in Fig. 6. The complexity of a graph

construction lies in the definition of dependencies among

variants. When there is a relationship between cross-tree (or

cross hierarchy) variants (or variation points) we denote it as

a dependency. Typically dependencies are either inclusion or

exclusion: if there is a dependency between 𝑝 and 𝑞, then if 𝑝

is included then 𝑞 must be included (or excluded). Only

inclusion dependencies are shown in this paper.

Dependencies are drawn by dotted lines (e.g., from 𝑣2.3.1to

𝑣1.1).

Fig. 5. Logical notations for feature models

Fig. 6. A partial CAD feature graph using symbolic notations

A. Analysis of Variants

Automatic analysis of variants is already identified as a

critical task [6]. Various operations of variant analysis are

suggested in [7], [8]. Our logical representation can define

and validate a number of such analysisoperations. The

validation of a product line model is assisted by its logical

representation. While constructinga single system from a

product line model we assign TRUE (T) value to selected

variants and FALSE (F) tothose not selected. After

substituting these values to product line model, if TRUE

value is evaluated, we call the model as valid otherwise the

model is invalid. A product graph is considered to be valid if

the mandatory sub-graphs are evaluated to TRUE.

Example 1: Suppose the selected variants are

𝑣1, 𝑣1.1, 𝑣2, 𝑣2.3, 𝑣2.3.1, 𝑣2.4, 𝑣3and𝑣3.2. We check the validity

of the subgraphs 𝐺1 , 𝐺2 and 𝐺3 by substituting the truth

values of the variants of the subgraphs

𝐺1: (𝑣1.1 ⨁ 𝑣1.2) ⇔ 𝑣1.2 = (𝑇 ⨁ 𝐹) ⇔ 𝑇 = 𝑇

𝐺2: 𝑣2 ⇔ 𝑣2.1 ∨ 𝑣2.2 ∨ 𝑣2.3 ∨ 𝑣2.4 = 𝑣2 ⇔ 𝑣2.1 ∨

 𝑣2.2 ∨ 𝑣2.3.1 ⊕ 𝑣2.3.2 ⇔ 𝑣2.3 ∨ 𝑣2.4

= 𝑇 ⇔ 𝑇 ∨ 𝐹 ∨ 𝑇 ⊕ 𝐹 ⇔ 𝑇 ∨ 𝑇 = 𝑇

𝐺3: 𝑣3.1 ⊕ 𝑣3.2 ⇔ 𝑣3 = 𝐹 ⊕ 𝑇 ⇔ 𝑇 = 𝑇

As the sub-graphs𝐺1, 𝐺2, and 𝐺3 are evaluate to TRUE, the

product model is valid. However, variant dependencies are

not considered in this case. Dependencies among variants are

defined as additional constraints which must be checked

separately apart from checking the validity of the subgraphs.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

73

Evaluating the dependencies of the selected variants, we get ,

Dependency: 𝑣2.3.1 ⇒ 𝑣1.1 ∧ 𝑣2.4 ⇒ 𝑣3.2 =
 𝑇 ⇒ 𝑇 ∧ (𝑇 ⇒ 𝑇) = 𝑇

It concludes that the selected features from the feature

model create a valid product.

Example 2: Similar to Example 1, suppose the selected

variants are 𝑣1, 𝑣2, 𝑣2.1, 𝑣2.3, 𝑣2.3.1, 𝑣2.4, and 𝑣3. Initially,

neither 𝑣1.1 nor 𝑣3.2 is selected. However, there is inclusion

dependency between 𝑣2.3.1and 𝑣1.1, and between 𝑣2.4 and

𝑣3.2 and the dependent variants are not selected. Therefore,

the whole product model becomes invalid. To handle such

scenarios where dependency decision can be propagated, a

set of rules has been defined using first-order logic. One of

the rules indicates that if there is an inclusion dependency

between x and y and if x is selected then y will be selected.

Due to inclusion dependency, both 𝑣1.1 and 𝑣3.2 will be

automatically selected and the product graph will be

evaluated to TRUE resulting in a valid model. It indicates

how the model supports decision propagation. Inconsistency,

dead featureetc.

V. CONCLUSIONS

This paper presented an approach to formalizing and

verifying SPL variant models by using formal reasoning

techniques. We provided formal semantics of the feature

models by using first-order logic and specified the definitions

of six types of variant relationships. Examples are provided

describing various analysis operations, such as validity,

inconsistency, dead feature detection etc. We are currently

working towards answering all the analysis questions

mentioned in [7], [8].

In contrast to other approaches [9], [10], our proposed

method defines across-graph variant dependencies as well as

dependencies between variation point and variants. These

dependencies are defined as additional constraints while

creating sub-graphs from the feature graph. Comparing to

that presentation, our definition relies on first-order logic

which can be directly applied in many verification tools.

Currently, we are encoding our logical representation and

predicate rules in Alloy [3]. It will allow us to automatically

model check and analyse the logical representation.

REFERENCES

[1] P. Clements and L. Northrop, “Software product lines: Practices and

patterns,” 3rd ed. Addison-Wesley Professional, 2001.

[2] S. Ripon, “A unified tabular method for modeling variants of software

product line,” SIGSOFT Software Engineering Notes, vol. 37, May

2012.

[3] D. Jackson, “Alloy: A lightweight object modeling notation,” ACM

Trans. Softw. Eng. Methodol., vol. 11, pp. 256-290, April 2002.

[4] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A

feature-oriented reuse method with domain-specific reference

architectures,” Ann. Softw. Eng., vol. 5, pp. 143-168, January 1998.

[5] K. Czarnecki and U. W. Eisenecker, “Generative programming:

methods, tools, and applications,” New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 2000.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

“Feature-oriented domain analysis (FODA) feasibility study,”

Carnegie-Mellon University Software Engineering Institute November

1990.

[7] D. Benavides, S. Corte, A. Ruiz, P. Trinidad, and S. Segura, “A survey

on the automated analyses of feature models,” in JISBD, 2006, pp.

367-376.

[8] D. Benavides, S. Segura, S. Cort'e, and A. Ruiz, “Automated analysis

of feature models 20 years later: A literature review,” Inf. Syst., vol. 35,

pp. 615-636, 2010.

[9] M. Mannion, “Using First-Order Logic for Product Line Model

validation,” in Proceedings of the Second International Conference on

Software Product Lines, London, UK, 2002, pp. 176-187.

[10] W. Zhang, H. Zhao, and H. Mei, “A propositional logic-based method

for verification of feature models,” in Formal Methods and Software

Engineering. vol. 3308, J. Davies, W. Schulte, and M. Barnett, Eds., ed:

Springer Berlin / Heidelberg, 2004, pp. 115-130.

[11] G. Halmans and K. Pohl, “Communicating the variability of a software

product family to customers,” Software and Systems Modeling, vol. 2,

pp. 15-36, Springer, Hamburg, March 2003.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

74

