
  

  
Abstract—This paper presents methods that utilize 

multi-core PC to perform large-scale MOSFET circuit and 
transient sensitivity simulations in parallel. A very 
coarse-grained parallel computing scheme, called Combining 
Simulation Method (CSM), is proposed for both circuit and 
transient sensitivity simulations. Relaxation-based algorithms 
have been utilized as simulation algorithms in CSM, in which 
only minor modifications for algorithm codes are needed. All 
proposed methods have been implemented and tested in 
multi-core PCs. Experimental results justify good speedups and 
accurate results can be obtained. 
 

Index Terms—circuit simulation, parallel computing, 
relaxation-based, sensitivity computation  
 

I. INTRODUCTION 
Undertaking circuit simulation is very important in IC 

design community. Accurate approaches to solve circuit 
simulation problem include the “standard” simulators (such 
as SPICE) and relaxation-based simulators (such as RELAX 
[1], and SPLICE [2]). There exist faster simulation 
approaches using simpler simulation models (such as 
piecewise-linear model and switch-level model). But they 
only provide related coarse waveforms. The trade-off 
between the solution accuracy and simulation speed firmly 
exists.  

In this paper, we propose PC-based parallel-computing 
strategies to raise the calculation efficiency directly and then 
break the trade-off mentioned above. Since multi-core PCs 
are very popular today, the success of this paper has practical 
values. We propose parallel-computing strategies for 
MOSFET circuit simulation as well as for sensitivity 
simulation. Our basic idea is to ask various processors to 
simulate different portions of the simulated circuit and then 
combine “sub-waveforms”. We call this strategy the 
Combining Simulation Method (CSM). Partitioning the 
simulated circuit into portions is important in CSM. We find 
that simulation-on-demand (SOD, i.e. only simulate 
subcircuits contributing to wanted outputs) can be used to 
partition for CSM in circuit simulation case, and direct 
dividing design parameters can be used to partition for CSM 
in sensitivity simulation case. 

Backward-traversing Waveform Relaxation (BTWR) [3] is 
a specialized relaxation-based algorithm that simulates 
subcircuits by traversing subcircuits from the rear end to 
front end backwardly. So, it has the function of SOD. We will 
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use SOD of BTWR to divide. Iterated Timing Analysis (ITA) 
[2] is another relaxation-based algorithm, and it has been 
used in commercial FAST SPICE programs. The SOD 
function can be added to it in order to use CSM. However, the 
SOD in ITA can be dependent on static signal flows. We also 
find that the Direct Approach for solving transient 
sensitivities can be used in CSM, too. The sensitivity circuit 
with respect to a design parameter is independent to those 
with respect to other design parameters. So, each sensitivity 
circuit is an independent portion in using CSM. Sensitivity 
computations can be naturally implemented in CSM. 

The proposed methods all have been implemented. 
Experiments are made to justify their effects. The outline of 
this paper is as follows. In Section 2, the methods for solving 
circuit/sensitivity simulations are described, including 
BTWR, ITA, and Direct Approach sensitivity simulation. In 
Section 3, CSM is illustrated. Section 4 shows experimental 
results to demonstrate effects of proposed methods. Finally, 
conclusions are made in Section 5. 

 

II. BTWR, ITA AND SENSITIVITY COMPUTATIONS 

A. BTWR Algorithm 
One of the fundamental circuit simulation algorithms of 

this work is BTWR, which is relaxation-based [1, 2]. The two 
famous algorithms of this class of algorithms are WR 
(Waveform Relaxation) and ITA (Iterated Timing Analysis) 
[1, 2]. BTWR is a more complicated algorithm. Its advantage 
is the ability to perform dynamic SOD [3]. We describe 
mathematic equations now. The simulated circuit can be 
described as following time-varying differential equation: 
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.
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where Y is the vector of circuit variables, t is the time, F is a 
continuous function and “.” means differentiation with 
respect to time. The simulated circuit is partitioned into 
subcircuits, and the ith subcircuit is: 
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This equation, a, can be expressed as the abbreviate form: 

0)),(),(),(),((
..

=ttwtwtytyf                (3) 

where y (Yi, a sub-vector of Y) is the vector of circuit 
variables in a, w (Di, the decoupling vector) is the vector of 
circuit variables not in a, and f is a continuous function. In 
this paper, a subcircuit calculation (used as performance 
index) means the computation efforts to solve (3) for y(tn+1) 
(tn+1 is current time point), which include applying integral 
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formula (such as Trapezoidal method) to (3), and solving the 
derived nonlinear algebraic equations by Newton’s iteration. 

The basic idea of BTWR is to consider the 
cause-and-consequence concept. The left part of Fig. 1 is a  
signal flow graph for partitioned subcircuits, in which the 
transient solution of subcircuit a is obviously the 
consequence of transient solutions of b and c. Therefore, b 
and c need to be solved before a to raise the computation 
efficiency. To trace these cause-and-consequence relations, 
we use the backward graph traversal technique. Introducing 
more clearly, we define some variables inside each subcircuit: 
tc is the time point for which the subcircuit has converged so 
far, tnow is the current time point to be solved, and ta (time 
arrived) is the time boundary at which the subcircuit is asked 
to be solved. In Fig. 1, the traversal starts from subcircuit a 
(tries to solve for y at a.tnow). The traversal visits a’s fan-in 
subcircuit b at first and ask it to be solved at time point later 
than b.ta (which is also a.tnow) in order to provide waveform 
references for subcircuit a. The traversal then continually 
visits c and asks it to be solved at time point later than c.ta 
(which is also b.tnow) for the same sake. Subcircuit c needs to 
forward two time points to move its tnow to over c.ta. In Fig. 1, 
the actual subcircuit calculation sequence would be: c be 
solved at its two tnow time points, b be solved at its tnow time 
points, and then a be solved at its tnow time points. This 
process might repeat several times until a.tnow is converged. 
The job of main program of BTWR is simple. It just picks 
subcircuit with smallest tnow, activates the “starting” 
backward traversal (called Mode-0 traversal) from it, and 
repeats the same process until no subcircuit left. 

There are software schemes [3] to handle the feedback 
subcircuits (including adjacent coupling and global feedback 
loops) to strengthen the robustness of BTWR. BTWR 
exhibits several advantages. First, the multi-rate behaviors of 
circuits can be exploited. Second, the windowing technique 
[1] is automatically applied. Third, the function of 
selective-tracing scheme of ITA [2] (to calculate connected 
subcircuits) is retained. Finally and most important for this 
paper, it’s easy to implement high quality SOD on BTWR. 
BTWR is represented in pseudo codes of Algorithm 1. Note 
that SOD function is built in lines labeled by “Sod1” and 
“Sod2.” 

Algorithm 1 (BTWR-based Circuit Simulation): 
// ckt is the simulated circuit partitioned into N subcircuits. 
// Simulation duration is Tbegin ∼Tend 
BTWR(ckt, Tbegin, Tend) { 
 Set tc, tnow of all subcircuits to their initial values;  
 while(there is any subcircuit whose tc is not equal to Tend) { 
  Pick the subcircuit x with smallest tnow;  
Sod1: 
  if(! contribute[x]) continue;  // the SOD function 
  BTWRtrace(0, x.tnow, x);  // begin to call the traversal 
 } 
} 
 
BTWRtrace(mode, ta, sub) {  
  // sub.in_stack array records whether sub has been traversed 
  if(mode is 0) Clear all subcircuits’ in_stack flag, tever = 0;  
  else if(mode == 1) sub.in_stack = 1; 
  if(mode is 0) Clear GFL; // the set containing subcircuits of GFLs 
  dtnow = sub.tnow; // the old tnow  
  do { 
   for(all sub’s fan-in subcircuit x) { 
    // backwardly traverse all predecessors  
    if(x is strongly coupled with sub) synchronize x and sub;  
Rtr:   if(! sub.in_stack) BTWRtrace(1, sub.tnow, x);  

Loop:  else { // has encountered a back edge 
     Add subcircuits from sub to x (in the recursion queue) 
      into GFL; 
    } 
   } 
S1:  if(sub is not in GFL) { // simulate sub or all subcircuits in GFL 
    Solve (3) of sub at sub.tnow;  
    if(Newton iteration diverges or solution quality is bad) 
     reduce tnow;  // shrink the time step 
    else if(results have been converged) { 
     tever = MAX(tever , sub.tc); 
     sub.tc = sub.tnow; 
     Estimate new sub.tnow;  
    } 
   } 
S2:  if(sub is the first subcircuit of GFL) { // simulate GFL 
    Simulate GFL by using WR algorithm; 
    break; 
   } 
Sod2:  contribute[sub] = true;  // the SOD function 
Stop1: if(mode is 0 && sub.tc >= dtnow) break; 
Stop2: else if(mode is 1 && tever >= ta) break; 

 } while (true); 
} 

B. ITA Algorithm 
ITA [2] is a well-known algorithm, which belongs to 

relaxation-based class of algorithms and is frequently 
adopted as the algorithm of FAST SPICE programs. So, it’s 
valuable to discuss the parallel simulation of ITA. Its 
algorithm can be found in [2] and many other literatures. In 
this work, ITA is used to simulate both time and sensitivity 
simulations. 

 
Fig. 1. A traversal starting from subcircuit a. Subcircuit b and c are asked to 

be calculated to time point later then ta. 

As we explain earlier, SOD is to simulate the least number 
of subcircuits and still to satisfy users’ requirements. 
Processed by relaxation-based algorithm, the entire circuit 
has been partitioned into subcircuits that can be viewed as a 
directed graph called subcircuit signal flow graph (in which 
subcircuits are viewed as vertices, and affecting relations are 
viewed as directed edges). We can identify subcircuits 
having “contributions” to the user-wanted nodes by graph 
traversals. The method is to backwardly traverse the directed 
graph from nodes of interested, and mark all subcircuits 
traversed. In performing simulation, the unmarked 
subcircuits are just bypassed. Note that this method is simple 
and is based on the “static” subcircuit signal flow graph. If 
we want to use the “dynamic” subcircuit signal flow graph 
(which considers the conducting situations of transistors) that 
is more accurate, we should use BTWR.  

C. Sensitivity Computation 
There are Direct and Adjoint approaches to calculate 

transient sensitivities. If we use relaxation-based algorithms 
and Direct Approach to simulate transient sensitivities [5], 
CSM could be useful. In Direct Approach, there exists one 
specific sensitivity circuit with respect to one design 
parameter [5]. Each sensitivity circuit is independent to 
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others. So, the strategy to partition the sensitivity simulation 
task in CSM is clear: we just partition the list of design 
parameters. This CSM partition strategy can be called 
distribution by direct dividing, while the CSM partition 
strategy for BTWR and ITA can be called distribution by 
SOD. Note that in sensitivity computation, both these two 
partition strategies can be applied together. But in our 
sensitivity simulation program, only distribution by direct 
dividing is implemented. 

 

III. THE COMBINING SIMULATION METHOD 
In using relaxation-based algorithm, there exist many 

strategies to utilize the parallelism. These strategies can be 
classified into space, temporal, and iteration respects [4]. The 
Combining Simulation Method belongs to the space respect. 
The basic idea is to use “client” processors to simulate 
different portions of the simulated circuit, and then combine 
the obtained “client-waveforms.” CSM using two processors 
is illustrated in Fig. 2. In this figure, there is a 
master-simulation that analyzes the simulated circuit, divides 
the circuit, sends the divided portions to client-simulations 
(which is simulated by one single processor), waits for the 
end of client-simulations, and then combines 
client-waveforms. The client-simulation just simulates given 
portion of the analyzed circuits and generates the 
sub-waveforms (client-waveforms). There might exist 
modifications for the basic scheme of Fig. 2. For example, 
the sensitivity case is shown in Fig. 3, in which the time 
waveform (in the center square) is pre-calculated to be used 
by all sensitivity client-simulations. 

CSM is simple and is not applicable to all problems. The 
key factor for successfully utilizing CSM is that the 
considered simulation can be divided into independent 
portions. Once the considered simulation is certified to pass 
this criterion, it can be parallel processed by CSM. For the 
correctness and efficiency of CSM, dividing the simulated 
circuit is a critical step. The divided portions of the simulated 
circuit should be independent or the client-waveforms would 
be inaccurate. It is possible to undertake waveform relaxation 
between client-simulations to achieve the convergence of 
client-waveforms like [4], but we don’t consider this 
“complex” process in this paper. In this paper, we don’t 
really divide the simulated circuit. We use the mentioned 
distribution by SOD and distribution by direct dividing 
instead.  

In using the distribution by SOD, we just divide the list of 
wanted outputs and send them to client-simulations, while 
each client-simulation simulates the same circuit. This 
strategy is simple and trustable, since each client-simulation 
simulates the entire circuit by using SOD, in which the 
obtained client-waveforms are accurate and no waveform 
relaxation processes are needed. To derive better efficiency 
of CSM, client-simulations have better to exhaust roughly the 
same amount of CPU time (which is for load balancing 
among processors) and simulate as few overlapping portions 
of the simulated circuit as possible. These necessities can be 
taken cared by well dividing the list of wanted outputs. The 
criterion for dividing outputs is to put outputs of the same 
independent portion of the simulated circuit together such 

that they can be computed by the same client-simulation. 
Since SOD is used, the client-simulation will only simulate 
the related independent portion of the simulated circuit, and 
hence save the simulation time. To accomplish this dividing 
criterion, we need to analyze the simulated circuit. Because 
the  

 
Fig. 2. An example of combining simulation method, in which only two 

processors (and hence two client simulations) exist. 

 
Fig. 3. The example of applying combining simulation method in sensitivity 

computation, in which there are only two processors. 

Relaxation-based algorithms (BTWR and ITA) are used, 
the simulated circuit has been partitioned into subcircuits. 
We can utilize the signal flow graph of subcircuits to do such 
analysis, e.g. traversing the signal flow graph from the 
wanted outputs backwardly to see the “contributing” 
subcircuits.  

In dealing with sensitivity computation, the distribution by 
direct dividing is used. The design parameter list is divided 
equally into several smaller lists that are sent to 
client-simulations.  

We note that CSM is a very coarse-grained strategy for 
parallel circuit simulations, in which several circuit 
simulators execute at the same time. Therefore, there is no 
necessity to rewrite any code of circuit simulators. Moreover, 
various simulators can be used to purchase better simulation 
results, e.g. use SPICE to simulate analog portions, and use 
Fast SPICE to simulate digital portions. CSM is also a high 
level algorithm that omits many details. So, it can be used in 
single computer that has many cores or many computers 
(having one or several cores) on networks. In the latter case, 
CSM constructs the distributed circuit simulation. In this 
paper, we just implement CSM in the multiple-core PC and 
only use our simulator (MOSTIME [3, 5, 6]). Experiments 
will be described later. 
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We have implemented CSM using BTWR and ITA for 
“time” simulation (circuit simulation), in which distribution 
by SOD is used for partitioning. Also, CSM using ITA for 
sensitivity simulation is implemented, and distribution by 
direct dividing is used for partitioning. Note that sensitivity 
client-simulations read time waveforms from files (time 
waveforms are needed for all sensitivity client-simulations) 
at the beginning of sensitivity computation. 

There are overheads for reading and writing waveforms in 
using CSM. The amounts of overheads depend on the data 
size of time/sensitivity waveforms in Fig. 3 and Fig. 4. Such 
overhead is called “IO time” here, which will be recorded in 
our experiments. In using ITA, the points in time waveforms 
are usually dense [6]. This is due to that, in ITA, global time 
points are used for all subcircuits. Dense time points cause 
big waveform files. This problem can be alleviated by using 
the Multi-rate ITA [6]. Also, reducing time points of ITA 
waveforms can further reduce sizes of waveform files and 
hence to reduce the IO time. 

 

IV. EXPERIMENTAL RESULTS 
We have implemented all proposed methods in 

MOSTIME, and test them in multi-core PCs. When CSM is 
running, “master-MOSTIME” and several 
“client-MOSTIME” execute at the same time like Fig. 2. The 
master-MOSTIME activates client-MOSTIME and then 
combines client-waveforms, in which the passing of 
simulated circuits (which is described in “deck” files) and 
retrieving of client-waveforms all use the file system of 
Windows.  

At first, we check the effect of BTWR-based circuit 
simulations. Several circuits have been simulated, and results 
are listed in Table I. The two types of circuits are inverter 
chain and ALU (whose schematic is given in Fig. 4) chain, 
both of which are composed of CMOS gates. Timing 
waveforms of the 4-bit ALU simulated by BTWR and CSM 
are compared in Fig. 5 and sensitivity waveforms of the 
10-staged inverter chain simulated by ITA and CSM are 
compared in Fig. 6 respectively. The good waveform 
matches shows that implementations are correct. There are 
several independent portions in these circuits and they can be 
recognized by circuits’ names, e.g. “inv100x2” has two 
independent inverter chains. The number of cores is specified 
manually according to the number of independent portions. 
Numbers of outputs, which are important in SOD, are shown 
in Table 1, too. Three algorithms have been performed for 
each circuit, which are BTWR, BTWR plus SOD and 
BTWR-based CSM. The used CPU times of simulations are 
listed in columns. The column labeled with “IO” includes the 
time for writing client-waveforms (by client-simulation) and 
combining client-waveforms (by master-simulation), which 
can be referred to know the amount of overheads for 
processing client-waveforms. In the two right-most columns 
are speedup (compared with BTWR+SOD) and efficiency of 
CSM. Note that efficiency is defined as follows: 

#*)(
)(

CoreCSMT
SODBTWRT +=η                 (4) 

In which T(x) is the used CPU time of algorithm x. We can 

observe obvious performance enhancements. Note that last 
two circuits have not simulated well by BTWR (and ITA) due 
to the reason of not enough memory. The efficiencies of 
parallel computing are not good in some circuits, e.g. in the 
last circuit, only 46% of efficiency is recorded. We find that 
one client-simulation, which needs to compete for “global 
resources” of the same PC (such as the right to access disc 
and main memory) with other client-simulations, spends 
more simulation time than normal simulation. In this respect, 
to use network of PCs is an improvement method. 

ITA-based circuit simulations are then summarized in 
Table II. We firstly compare ITA and BTWR and find that 
BTWR performs better. This is due to that simulated circuits 
are all “one-way” circuits, so BTWR can converge well and 
simulate quickly (it can utilize multi-rate behaviors of 
circuits). Next, we check the speedup and parallel efficiency 
of CSM. The results are similar to those of BTWR. CSM 
using ITA works well, too. But, the IO time is much worse 
than those of BTWR. In our implementation, the waveform 
has been reduced (removing redundant time points) and IO 
time includes the time for this reduction. Obviously, in 
ITA-case the IO time is too big. However, we think we can 
solve this by selectively storing wanted waveforms rather 
than storing all waveforms (the implemented version).  

Now we check the parallel sensitivity computations. There 
are 20 design parameters in each experiment of Table III, and 
there are two cores in the used computer. So, each 
client-simulation just simulates 10 design parameters. The 
used algorithm is ITA (which causes dense waveforms). We 
can find that the speedup and parallel efficiency are 
satisfactory. Due to the dense waveforms caused by ITA, the 
IO time can’t be omitted, too (which is not listed). We think it 
can be compensated in the case of dealing with more design 
parameters and using more processors. 

 

V. CONCLUSION 
In this paper, we have presented techniques to utilize the 

popular and powerful multi-core PC. These techniques are 
CSM, and circuit and sensitivity simulations based on CSM. 
Relaxation-based algorithms, BTWR and ITA, are utilized in 
CSM to calculate both time and sensitivity simulations. The 
complete implementation on multi-core PC has been tested. 
Experimental results justify that proposed techniques provide 
good parallel-computing efficiencies. Finding more 
complicated and better partitioning methods for CSM and 
applications for CSM are our future works. 

 
TABLE I: CPU TIME COMPARISON FOR BTWR 

Ckt. Used CPU Time* Output# Core# Speedup η $

BTWR +SOD CSM IO 
inv100x
2 9.438 9.613 6.475 0.187 2 2 1.4 0.72

inv100x
4 19.23 18.68 8.783 0.359 3 4 2.1 0.54

alu4x2 10.26 9.454 7.099 0.53 8 2 1.4 0.72
alu2x4 9.064 7.566 4.04 0.577 8 4 2.2 0.56
alu32x2 N. A. 14.384 10.93 1.029 8 2 1.3 0.65
alu16x4 N. A. 14.025 7.472 1.264 8 4 1.8 0.46

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores 
$: The efficiency of parallel computing 
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TABLE II: CPU TIME COMPARISON FOR ITA 

Ckt. Used CPU Time* Output # Core 
# Speedup η

ITA +SOD CSM IO 

inv100x2 47.81 47.47 27.65 10.3 2 2 1.7 0.8
6  

inv100x4 93.47 93.3 37.25 13.3 3 4 2.5  0.6
3  

alu4x2 60.7 53.6 34.8 21.1 8 2 1.5  0.7
7  

alu2x4 45.19 37.98 15.88 10.5 8 4 2.4  0.6
0  

alu32x2$ N. A. 21.21 14.49 8.5 8 2 1.5  0.7
3  

alu16x4$ N. A. 19.45 9.703 8.6 8 4 2.0  0.5
0  

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores 
$: The used algorithm version is the so-called Multi-rate ITA [6] 

TABLE III: CPU TIME* COMPARISON FOR PARALLEL SENSITIVITY 
SIMULATIONS$ 

Ckt. ITA CSM+ITA Core # Speedup η
inv100x2 38.5 20.3 2 1.89 0.95
alu4x2 140.5 103 2 1.36 0.68

*: CPU is Intel Core 2 Duo (2.53 GHZ) that has two cores 
$: there are 20 design parameters (width of MOSFET) in each experiment 

 

 
Fig. 4. The schematic of ALU. 

 
Fig. 5. Waveform comparison for circuit alu4-2, which has two 4-bit ALU. 
The “CSM” means the “CSM+BTWR” algorithm. 

 
Fig. 6. Sensitivity waveform comparison for 10-staged inverter chain,where 
design parameter is the width of the MOSFET in the first gate. The “CSM” 
means the “sensitivity CSM+ITA” algorithm. 
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