

Abstract—This paper presents methods that utilize

multi-core PC to perform large-scale MOSFET circuit and
transient sensitivity simulations in parallel. A very
coarse-grained parallel computing scheme, called Combining
Simulation Method (CSM), is proposed for both circuit and
transient sensitivity simulations. Relaxation-based algorithms
have been utilized as simulation algorithms in CSM, in which
only minor modifications for algorithm codes are needed. All
proposed methods have been implemented and tested in
multi-core PCs. Experimental results justify good speedups and
accurate results can be obtained.

Index Terms—circuit simulation, parallel computing,
relaxation-based, sensitivity computation

I. INTRODUCTION
Undertaking circuit simulation is very important in IC

design community. Accurate approaches to solve circuit
simulation problem include the “standard” simulators (such
as SPICE) and relaxation-based simulators (such as RELAX
[1], and SPLICE [2]). There exist faster simulation
approaches using simpler simulation models (such as
piecewise-linear model and switch-level model). But they
only provide related coarse waveforms. The trade-off
between the solution accuracy and simulation speed firmly
exists.

In this paper, we propose PC-based parallel-computing
strategies to raise the calculation efficiency directly and then
break the trade-off mentioned above. Since multi-core PCs
are very popular today, the success of this paper has practical
values. We propose parallel-computing strategies for
MOSFET circuit simulation as well as for sensitivity
simulation. Our basic idea is to ask various processors to
simulate different portions of the simulated circuit and then
combine “sub-waveforms”. We call this strategy the
Combining Simulation Method (CSM). Partitioning the
simulated circuit into portions is important in CSM. We find
that simulation-on-demand (SOD, i.e. only simulate
subcircuits contributing to wanted outputs) can be used to
partition for CSM in circuit simulation case, and direct
dividing design parameters can be used to partition for CSM
in sensitivity simulation case.

Backward-traversing Waveform Relaxation (BTWR) [3] is
a specialized relaxation-based algorithm that simulates
subcircuits by traversing subcircuits from the rear end to
front end backwardly. So, it has the function of SOD. We will

Manuscript received July 30, 2012; revised September 3, 2012. This
work was supported by the National Science Council of Taiwan under Grant
NSC 101-2221-E-034-010

Chun-Jung Chen is with the Dept. of Computer Science, Chinese Culture
University, Taipei, Taiwan (e-mail: teacherchen62@yahoo.com.tw).

use SOD of BTWR to divide. Iterated Timing Analysis (ITA)
[2] is another relaxation-based algorithm, and it has been
used in commercial FAST SPICE programs. The SOD
function can be added to it in order to use CSM. However, the
SOD in ITA can be dependent on static signal flows. We also
find that the Direct Approach for solving transient
sensitivities can be used in CSM, too. The sensitivity circuit
with respect to a design parameter is independent to those
with respect to other design parameters. So, each sensitivity
circuit is an independent portion in using CSM. Sensitivity
computations can be naturally implemented in CSM.

The proposed methods all have been implemented.
Experiments are made to justify their effects. The outline of
this paper is as follows. In Section 2, the methods for solving
circuit/sensitivity simulations are described, including
BTWR, ITA, and Direct Approach sensitivity simulation. In
Section 3, CSM is illustrated. Section 4 shows experimental
results to demonstrate effects of proposed methods. Finally,
conclusions are made in Section 5.

II. BTWR, ITA AND SENSITIVITY COMPUTATIONS

A. BTWR Algorithm
One of the fundamental circuit simulation algorithms of

this work is BTWR, which is relaxation-based [1, 2]. The two
famous algorithms of this class of algorithms are WR
(Waveform Relaxation) and ITA (Iterated Timing Analysis)
[1, 2]. BTWR is a more complicated algorithm. Its advantage
is the ability to perform dynamic SOD [3]. We describe
mathematic equations now. The simulated circuit can be
described as following time-varying differential equation:

0)),(),((
.

=ttYtYF (1)

where Y is the vector of circuit variables, t is the time, F is a
continuous function and “.” means differentiation with
respect to time. The simulated circuit is partitioned into
subcircuits, and the ith subcircuit is:

0)),(),(),(),((
..

=ttDtDtYtYF iiiii (2)

This equation, a, can be expressed as the abbreviate form:

0)),(),(),(),((
..

=ttwtwtytyf (3)

where y (Yi, a sub-vector of Y) is the vector of circuit
variables in a, w (Di, the decoupling vector) is the vector of
circuit variables not in a, and f is a continuous function. In
this paper, a subcircuit calculation (used as performance
index) means the computation efforts to solve (3) for y(tn+1)
(tn+1 is current time point), which include applying integral

Parallel Circuit and Transient Sensitivity Simulations by
Using Combining Simulation Method

Chun-Jung Chen

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

449

formula (such as Trapezoidal method) to (3), and solving the
derived nonlinear algebraic equations by Newton’s iteration.

The basic idea of BTWR is to consider the
cause-and-consequence concept. The left part of Fig. 1 is a
signal flow graph for partitioned subcircuits, in which the
transient solution of subcircuit a is obviously the
consequence of transient solutions of b and c. Therefore, b
and c need to be solved before a to raise the computation
efficiency. To trace these cause-and-consequence relations,
we use the backward graph traversal technique. Introducing
more clearly, we define some variables inside each subcircuit:
tc is the time point for which the subcircuit has converged so
far, tnow is the current time point to be solved, and ta (time
arrived) is the time boundary at which the subcircuit is asked
to be solved. In Fig. 1, the traversal starts from subcircuit a
(tries to solve for y at a.tnow). The traversal visits a’s fan-in
subcircuit b at first and ask it to be solved at time point later
than b.ta (which is also a.tnow) in order to provide waveform
references for subcircuit a. The traversal then continually
visits c and asks it to be solved at time point later than c.ta
(which is also b.tnow) for the same sake. Subcircuit c needs to
forward two time points to move its tnow to over c.ta. In Fig. 1,
the actual subcircuit calculation sequence would be: c be
solved at its two tnow time points, b be solved at its tnow time
points, and then a be solved at its tnow time points. This
process might repeat several times until a.tnow is converged.
The job of main program of BTWR is simple. It just picks
subcircuit with smallest tnow, activates the “starting”
backward traversal (called Mode-0 traversal) from it, and
repeats the same process until no subcircuit left.

There are software schemes [3] to handle the feedback
subcircuits (including adjacent coupling and global feedback
loops) to strengthen the robustness of BTWR. BTWR
exhibits several advantages. First, the multi-rate behaviors of
circuits can be exploited. Second, the windowing technique
[1] is automatically applied. Third, the function of
selective-tracing scheme of ITA [2] (to calculate connected
subcircuits) is retained. Finally and most important for this
paper, it’s easy to implement high quality SOD on BTWR.
BTWR is represented in pseudo codes of Algorithm 1. Note
that SOD function is built in lines labeled by “Sod1” and
“Sod2.”

Algorithm 1 (BTWR-based Circuit Simulation):
// ckt is the simulated circuit partitioned into N subcircuits.
// Simulation duration is Tbegin ∼Tend
BTWR(ckt, Tbegin, Tend) {
 Set tc, tnow of all subcircuits to their initial values;
 while(there is any subcircuit whose tc is not equal to Tend) {
 Pick the subcircuit x with smallest tnow;
Sod1:
 if(! contribute[x]) continue; // the SOD function
 BTWRtrace(0, x.tnow, x); // begin to call the traversal
 }
}

BTWRtrace(mode, ta, sub) {
 // sub.in_stack array records whether sub has been traversed
 if(mode is 0) Clear all subcircuits’ in_stack flag, tever = 0;
 else if(mode == 1) sub.in_stack = 1;
 if(mode is 0) Clear GFL; // the set containing subcircuits of GFLs
 dtnow = sub.tnow; // the old tnow
 do {
 for(all sub’s fan-in subcircuit x) {
 // backwardly traverse all predecessors
 if(x is strongly coupled with sub) synchronize x and sub;
Rtr: if(! sub.in_stack) BTWRtrace(1, sub.tnow, x);

Loop: else { // has encountered a back edge
 Add subcircuits from sub to x (in the recursion queue)
 into GFL;
 }
 }
S1: if(sub is not in GFL) { // simulate sub or all subcircuits in GFL
 Solve (3) of sub at sub.tnow;
 if(Newton iteration diverges or solution quality is bad)
 reduce tnow; // shrink the time step
 else if(results have been converged) {
 tever = MAX(tever , sub.tc);
 sub.tc = sub.tnow;
 Estimate new sub.tnow;
 }
 }
S2: if(sub is the first subcircuit of GFL) { // simulate GFL
 Simulate GFL by using WR algorithm;
 break;
 }
Sod2: contribute[sub] = true; // the SOD function
Stop1: if(mode is 0 && sub.tc >= dtnow) break;
Stop2: else if(mode is 1 && tever >= ta) break;

 } while (true);
}

B. ITA Algorithm
ITA [2] is a well-known algorithm, which belongs to

relaxation-based class of algorithms and is frequently
adopted as the algorithm of FAST SPICE programs. So, it’s
valuable to discuss the parallel simulation of ITA. Its
algorithm can be found in [2] and many other literatures. In
this work, ITA is used to simulate both time and sensitivity
simulations.

Fig. 1. A traversal starting from subcircuit a. Subcircuit b and c are asked to

be calculated to time point later then ta.

As we explain earlier, SOD is to simulate the least number
of subcircuits and still to satisfy users’ requirements.
Processed by relaxation-based algorithm, the entire circuit
has been partitioned into subcircuits that can be viewed as a
directed graph called subcircuit signal flow graph (in which
subcircuits are viewed as vertices, and affecting relations are
viewed as directed edges). We can identify subcircuits
having “contributions” to the user-wanted nodes by graph
traversals. The method is to backwardly traverse the directed
graph from nodes of interested, and mark all subcircuits
traversed. In performing simulation, the unmarked
subcircuits are just bypassed. Note that this method is simple
and is based on the “static” subcircuit signal flow graph. If
we want to use the “dynamic” subcircuit signal flow graph
(which considers the conducting situations of transistors) that
is more accurate, we should use BTWR.

C. Sensitivity Computation
There are Direct and Adjoint approaches to calculate

transient sensitivities. If we use relaxation-based algorithms
and Direct Approach to simulate transient sensitivities [5],
CSM could be useful. In Direct Approach, there exists one
specific sensitivity circuit with respect to one design
parameter [5]. Each sensitivity circuit is independent to

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

450

others. So, the strategy to partition the sensitivity simulation
task in CSM is clear: we just partition the list of design
parameters. This CSM partition strategy can be called
distribution by direct dividing, while the CSM partition
strategy for BTWR and ITA can be called distribution by
SOD. Note that in sensitivity computation, both these two
partition strategies can be applied together. But in our
sensitivity simulation program, only distribution by direct
dividing is implemented.

III. THE COMBINING SIMULATION METHOD
In using relaxation-based algorithm, there exist many

strategies to utilize the parallelism. These strategies can be
classified into space, temporal, and iteration respects [4]. The
Combining Simulation Method belongs to the space respect.
The basic idea is to use “client” processors to simulate
different portions of the simulated circuit, and then combine
the obtained “client-waveforms.” CSM using two processors
is illustrated in Fig. 2. In this figure, there is a
master-simulation that analyzes the simulated circuit, divides
the circuit, sends the divided portions to client-simulations
(which is simulated by one single processor), waits for the
end of client-simulations, and then combines
client-waveforms. The client-simulation just simulates given
portion of the analyzed circuits and generates the
sub-waveforms (client-waveforms). There might exist
modifications for the basic scheme of Fig. 2. For example,
the sensitivity case is shown in Fig. 3, in which the time
waveform (in the center square) is pre-calculated to be used
by all sensitivity client-simulations.

CSM is simple and is not applicable to all problems. The
key factor for successfully utilizing CSM is that the
considered simulation can be divided into independent
portions. Once the considered simulation is certified to pass
this criterion, it can be parallel processed by CSM. For the
correctness and efficiency of CSM, dividing the simulated
circuit is a critical step. The divided portions of the simulated
circuit should be independent or the client-waveforms would
be inaccurate. It is possible to undertake waveform relaxation
between client-simulations to achieve the convergence of
client-waveforms like [4], but we don’t consider this
“complex” process in this paper. In this paper, we don’t
really divide the simulated circuit. We use the mentioned
distribution by SOD and distribution by direct dividing
instead.

In using the distribution by SOD, we just divide the list of
wanted outputs and send them to client-simulations, while
each client-simulation simulates the same circuit. This
strategy is simple and trustable, since each client-simulation
simulates the entire circuit by using SOD, in which the
obtained client-waveforms are accurate and no waveform
relaxation processes are needed. To derive better efficiency
of CSM, client-simulations have better to exhaust roughly the
same amount of CPU time (which is for load balancing
among processors) and simulate as few overlapping portions
of the simulated circuit as possible. These necessities can be
taken cared by well dividing the list of wanted outputs. The
criterion for dividing outputs is to put outputs of the same
independent portion of the simulated circuit together such

that they can be computed by the same client-simulation.
Since SOD is used, the client-simulation will only simulate
the related independent portion of the simulated circuit, and
hence save the simulation time. To accomplish this dividing
criterion, we need to analyze the simulated circuit. Because
the

Fig. 2. An example of combining simulation method, in which only two

processors (and hence two client simulations) exist.

Fig. 3. The example of applying combining simulation method in sensitivity

computation, in which there are only two processors.

Relaxation-based algorithms (BTWR and ITA) are used,
the simulated circuit has been partitioned into subcircuits.
We can utilize the signal flow graph of subcircuits to do such
analysis, e.g. traversing the signal flow graph from the
wanted outputs backwardly to see the “contributing”
subcircuits.

In dealing with sensitivity computation, the distribution by
direct dividing is used. The design parameter list is divided
equally into several smaller lists that are sent to
client-simulations.

We note that CSM is a very coarse-grained strategy for
parallel circuit simulations, in which several circuit
simulators execute at the same time. Therefore, there is no
necessity to rewrite any code of circuit simulators. Moreover,
various simulators can be used to purchase better simulation
results, e.g. use SPICE to simulate analog portions, and use
Fast SPICE to simulate digital portions. CSM is also a high
level algorithm that omits many details. So, it can be used in
single computer that has many cores or many computers
(having one or several cores) on networks. In the latter case,
CSM constructs the distributed circuit simulation. In this
paper, we just implement CSM in the multiple-core PC and
only use our simulator (MOSTIME [3, 5, 6]). Experiments
will be described later.

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

451

We have implemented CSM using BTWR and ITA for
“time” simulation (circuit simulation), in which distribution
by SOD is used for partitioning. Also, CSM using ITA for
sensitivity simulation is implemented, and distribution by
direct dividing is used for partitioning. Note that sensitivity
client-simulations read time waveforms from files (time
waveforms are needed for all sensitivity client-simulations)
at the beginning of sensitivity computation.

There are overheads for reading and writing waveforms in
using CSM. The amounts of overheads depend on the data
size of time/sensitivity waveforms in Fig. 3 and Fig. 4. Such
overhead is called “IO time” here, which will be recorded in
our experiments. In using ITA, the points in time waveforms
are usually dense [6]. This is due to that, in ITA, global time
points are used for all subcircuits. Dense time points cause
big waveform files. This problem can be alleviated by using
the Multi-rate ITA [6]. Also, reducing time points of ITA
waveforms can further reduce sizes of waveform files and
hence to reduce the IO time.

IV. EXPERIMENTAL RESULTS
We have implemented all proposed methods in

MOSTIME, and test them in multi-core PCs. When CSM is
running, “master-MOSTIME” and several
“client-MOSTIME” execute at the same time like Fig. 2. The
master-MOSTIME activates client-MOSTIME and then
combines client-waveforms, in which the passing of
simulated circuits (which is described in “deck” files) and
retrieving of client-waveforms all use the file system of
Windows.

At first, we check the effect of BTWR-based circuit
simulations. Several circuits have been simulated, and results
are listed in Table I. The two types of circuits are inverter
chain and ALU (whose schematic is given in Fig. 4) chain,
both of which are composed of CMOS gates. Timing
waveforms of the 4-bit ALU simulated by BTWR and CSM
are compared in Fig. 5 and sensitivity waveforms of the
10-staged inverter chain simulated by ITA and CSM are
compared in Fig. 6 respectively. The good waveform
matches shows that implementations are correct. There are
several independent portions in these circuits and they can be
recognized by circuits’ names, e.g. “inv100x2” has two
independent inverter chains. The number of cores is specified
manually according to the number of independent portions.
Numbers of outputs, which are important in SOD, are shown
in Table 1, too. Three algorithms have been performed for
each circuit, which are BTWR, BTWR plus SOD and
BTWR-based CSM. The used CPU times of simulations are
listed in columns. The column labeled with “IO” includes the
time for writing client-waveforms (by client-simulation) and
combining client-waveforms (by master-simulation), which
can be referred to know the amount of overheads for
processing client-waveforms. In the two right-most columns
are speedup (compared with BTWR+SOD) and efficiency of
CSM. Note that efficiency is defined as follows:

#*)(
)(

CoreCSMT
SODBTWRT +=η (4)

In which T(x) is the used CPU time of algorithm x. We can

observe obvious performance enhancements. Note that last
two circuits have not simulated well by BTWR (and ITA) due
to the reason of not enough memory. The efficiencies of
parallel computing are not good in some circuits, e.g. in the
last circuit, only 46% of efficiency is recorded. We find that
one client-simulation, which needs to compete for “global
resources” of the same PC (such as the right to access disc
and main memory) with other client-simulations, spends
more simulation time than normal simulation. In this respect,
to use network of PCs is an improvement method.

ITA-based circuit simulations are then summarized in
Table II. We firstly compare ITA and BTWR and find that
BTWR performs better. This is due to that simulated circuits
are all “one-way” circuits, so BTWR can converge well and
simulate quickly (it can utilize multi-rate behaviors of
circuits). Next, we check the speedup and parallel efficiency
of CSM. The results are similar to those of BTWR. CSM
using ITA works well, too. But, the IO time is much worse
than those of BTWR. In our implementation, the waveform
has been reduced (removing redundant time points) and IO
time includes the time for this reduction. Obviously, in
ITA-case the IO time is too big. However, we think we can
solve this by selectively storing wanted waveforms rather
than storing all waveforms (the implemented version).

Now we check the parallel sensitivity computations. There
are 20 design parameters in each experiment of Table III, and
there are two cores in the used computer. So, each
client-simulation just simulates 10 design parameters. The
used algorithm is ITA (which causes dense waveforms). We
can find that the speedup and parallel efficiency are
satisfactory. Due to the dense waveforms caused by ITA, the
IO time can’t be omitted, too (which is not listed). We think it
can be compensated in the case of dealing with more design
parameters and using more processors.

V. CONCLUSION
In this paper, we have presented techniques to utilize the

popular and powerful multi-core PC. These techniques are
CSM, and circuit and sensitivity simulations based on CSM.
Relaxation-based algorithms, BTWR and ITA, are utilized in
CSM to calculate both time and sensitivity simulations. The
complete implementation on multi-core PC has been tested.
Experimental results justify that proposed techniques provide
good parallel-computing efficiencies. Finding more
complicated and better partitioning methods for CSM and
applications for CSM are our future works.

TABLE I: CPU TIME COMPARISON FOR BTWR

Ckt. Used CPU Time* Output# Core# Speedup η $

BTWR +SOD CSM IO
inv100x
2 9.438 9.613 6.475 0.187 2 2 1.4 0.72

inv100x
4 19.23 18.68 8.783 0.359 3 4 2.1 0.54

alu4x2 10.26 9.454 7.099 0.53 8 2 1.4 0.72
alu2x4 9.064 7.566 4.04 0.577 8 4 2.2 0.56
alu32x2 N. A. 14.384 10.93 1.029 8 2 1.3 0.65
alu16x4 N. A. 14.025 7.472 1.264 8 4 1.8 0.46

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores
$: The efficiency of parallel computing

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

452

TABLE II: CPU TIME COMPARISON FOR ITA

Ckt. Used CPU Time* Output # Core
Speedup η

ITA +SOD CSM IO

inv100x2 47.81 47.47 27.65 10.3 2 2 1.7 0.8
6

inv100x4 93.47 93.3 37.25 13.3 3 4 2.5 0.6
3

alu4x2 60.7 53.6 34.8 21.1 8 2 1.5 0.7
7

alu2x4 45.19 37.98 15.88 10.5 8 4 2.4 0.6
0

alu32x2$ N. A. 21.21 14.49 8.5 8 2 1.5 0.7
3

alu16x4$ N. A. 19.45 9.703 8.6 8 4 2.0 0.5
0

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores
$: The used algorithm version is the so-called Multi-rate ITA [6]

TABLE III: CPU TIME* COMPARISON FOR PARALLEL SENSITIVITY
SIMULATIONS$

Ckt. ITA CSM+ITA Core # Speedup η
inv100x2 38.5 20.3 2 1.89 0.95
alu4x2 140.5 103 2 1.36 0.68

*: CPU is Intel Core 2 Duo (2.53 GHZ) that has two cores
$: there are 20 design parameters (width of MOSFET) in each experiment

Fig. 4. The schematic of ALU.

Fig. 5. Waveform comparison for circuit alu4-2, which has two 4-bit ALU.
The “CSM” means the “CSM+BTWR” algorithm.

Fig. 6. Sensitivity waveform comparison for 10-staged inverter chain,where
design parameter is the width of the MOSFET in the first gate. The “CSM”
means the “sensitivity CSM+ITA” algorithm.

REFERENCES
[1] A. R. Newton and A. L. S. Vincentelli, “Relaxation-based electrical

simulation,” IEEE Trans on CAD, vol. CAD-3, pp. 308-311, Oct. 1984.
[2] R. A. Saleh and A. R. Newton, “The exploitation of latency and

multirate behavior using nonlinear relaxation for circuit simulation,”
IEEE Trans., Computer-aided Design, vol. 8, pp. 1286-1298,
December 1989.

[3] C. J. Chen, T. N. Yang, and J. D. Sun, “The Backward-traversing
Relaxation Algorithm for Circuit Simulation,” IEEE Custom
Integrated Circuit Conference, San Jose, California, pp. 353-356,
September 10-13, 2006.

[4] C. P. Soto, R. Saleh, and T. Kwasniewski, “Time warping-waveform
relaxation in a distributed circuit simulation environment,” pp. 338-341,
in Proceedings of the 38th Midwest Symposium on Circuit and System,
1995.

[5] C. J. Chen and W. S. Feng, “Transient sensitivity computations of
MOSFET circuits using Iterated Timing Analysis and Selective-tracing
Waveform Relaxation, in Proceeding of 31st Design Automation
Conference, pp. 581-585, San Diego CA, June 1994.

[6] C. Chen, C. C. Chang, C. J. Lee, C. L. Tsai, A. Y. Chang, and J. D. Sun,
“The Multi-rate Iterated Timing Analysis Algorithm for Circuit
Simulation,” 53rd IEEE International Midwest Symposium on Circuits
and Systems, Seattle USA, pp. 821-824, Aug. 1-4 2010.

Chun-Jung Chen received the B.S. degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1989, and the Ph.D.
degree in electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1994.
 He is now an Associate Professor of the
Department of Computer Science of Chinese Culture
University in Taipei Taiwan. His research interests
include circuit simulation, transient sensitivity

computation, and parallel computing.
 Dr. Chun-Jung Chen is also the member of IACSIT.

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

453

