

Abstract—As the World Wide Web has succeed in distributed

information publication system which is an unidirectional
communication system , there is an increasing demand for
other network services, such as real-time data feeds, group
communication and teleconferencing, which requires a
full-duplex connection between client and server. Ajax and
Comet has been introduced to archive such real-time
requirements on the web, which have several limitations such as
poor performance and high resource consumption [1]. This
paper proposes a real-time group communication software
architecture called Komm based on WebSocket, which
represents the next evolutionary step in web communication
compared to Comet and Ajax. Comparing with Comet and
Ajax implementation, Komm shows better usability, higher
performance and lower resource consumption.

Index Terms—Full-duplex web communication, real-time
web, server push, web socket.

I. INTRODUCTION
People believe that communicating is an important activity

in today’s information society. We spend a significant
portion of our life, either in work or leisure, communicating
with other people, either face to face directly or via phone,
email or micro-blog remotely. Therefore, finding more
efficient ways for communication with others is an important
area to research [2]. We believe that the most significant
problem that keeps people from communicating with one
another via traditional teleconferencing system is the
limitation of accessibility.

The Web has become a commonly available in the current
society, either on the computer or the mobile phone. The Web
has been the most acceptable way for access information in
the internet in both business and personal life. Developing
group communication service on the web is an excellent way
to improve accessibility of such service. This should be done
in a way that does not require specific proprietary features of
web browsers or plug-ins.

Group communication is the exchange of information
between groups of participants in a session. This can roughly
be divided into two categories: synchronous and
asynchronous. Asynchronous communication can easily be
implemented by using HTML forms and back-end system
including database and CGI-like application. Synchronous
communication system also known as real-time

Manuscript received July 15, 2012; revised September 1, 2012.
Yan Zhangling is with the Department of Computer Science and Software

Engineering, Sichuan University Jincheng College, Chengdu 610000 China
(e-mail: yanzhangling@scujcc.cn).

Dai Mao is now with the Department of Information Management,
Sichuan University Distance Education College, Chengdu 610000 China
(e-mail: daimao@scude.cc).

communication system always includes a large number of
passive recipients [3].

Ajax provides a mild salve to the HTTP communication
model model by enabling web clients to asynchronously poll
for server-side events. Comet introduced an even greater
departure from the HTTP communications model by
enabling “push”-style of communication over HTTP. HTML
5 WebSocket represents the next evolution of Comet and
Ajax in an attempt to stand HTTP communications on its
head. The HTML5 WebSocket specification defines a
single-socket full-duplex (or bi-directional) connection for
pushing and pulling information between the browser and
server. Thus, it avoids the connection and portability issues
of Comet and provides a more efficient solution than Ajax
polling [4].

In this paper, we focus on real-time, synchronous group
communication, design the system architecture of such
system and implemented one called Komm based WebSocket,
message queue and NoSQL database[5][6].

II. DESIGN ASPECTS FOR GROUP COMMUNICATION

A. The Key Features of Group Communication
According to the common scene of group communication,

we can see that real-time group communication system
should include at least several features:

•Two or more participants could be involved.
•Messages should be broadcast in a very short time,

which is typical less than 1 second between sender and
receiver.
• Messages could be sent to specific receiver or group of

receivers.

B. High Level Architecture on B/S Mode
Certainly, the first important problem needs solving is

what technical framework will be involved in this system in
the first stage. What impact the whole progress decisively is
choosing the right development toolkit, which will affect the
programming development, testing and bug fixing. After
evaluating, we choose JavaScript language and Node.js,
framework and HTML Web Socket as the technical
foundation.

Node.js is a platform built on Chrome's JavaScript runtime
for easily building fast, scalable network applications.
Node.js uses an event-driven, non-blocking I/O model that
makes it lightweight and efficient, perfect for data-intensive
real-time applications that run across distributed devices.
Node.js consists of Google's V8 JavaScript engine, libUV,
and several built-in libraries. Node.js original goal was to
create the ability to make web sites with push capabilities as

A Real-Time Group Communication Architecture Based on
WebSocket

Yan Zhangling and Dai Mao

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

408

seen in web applications like Gmail. Similar environments
written in other programming languages include Twisted for
Python, Perl Object Environment for Perl, libevent for C and
Event Machine for Ruby. Unlike most JavaScript programs,
it is not execute in a web browser, but is instead a server-side
JavaScript application. Node.js implements some Common
JS specifications. It provides a REPL environment for
interactive testing.

Node.js boasts of high concurrency, is a JavaScript
framework and hence functional or event based programming.
Socket.io works well with Web Socket, so it would be easy to
manage. There are the node modules we used:

• Socket.io, wraps Web Socket.
• Express, easy building web interface.
Web Socket is designed to be implemented in web

browsers and web servers, but it can be used by any client or
server application. The Web Socket protocol makes possible
more interaction between a browser and a web site,
facilitating live content and the creation of real-time
applications. In Web Socket, a two-way(bi-directional)
ongoing conversation can take place between a browser and
the server. A similar effect has been archived in
non-standardized ways using stop-gap technologies such as
Comet. However, a comet is not trivial to implement reliably,
and due to the TCP handshake and HTTP header overhead, it
may inefficient for small messages. The WebSocket protocol
aims to solve these problems without compromising security
assumptions of the web.

C. Event-Driven Model
In a traditional thread-based system, when a person get to

the receptionist he stand at the counter for as long as it takes
him to complete the transaction. If he have to fill out 3 forms,
he would do so right there at the counter while the
receptionist just sites there waiting for him. This way is
blocking the counter man from servicing any other customers.
The only real way to scale a thread-based system is to add
more receptionists. This, however, has financial implications
in the more resources would be consumed. So we will try
another new model to solve this problem, which is called
event-based model.

In an event-based system, when a person get to the counter
window and find out he had to complete additional forms, the
receptionist gives him the forms, a clipboard and a pen and
tells him to come back when he have completed the forms.
The person go sit down in the waiting and the receptionist
helps the next person in line. This way is not blocking the
counter man from servicing others. The system is already
highly scalable. If the waring queue starts getting too long,
we could certainly add an additional receptionist, but we
don't need to do so at quite the rate of a thread-based system.

D. The Consideration of Persistence
Although the RDBMS is widely accepted as a persistence

solution, it's not suitable for object-oriented programming. So
the NoSQL comes out. NoSQL database systems don't use
SQL as its query language. They are often highly optimized
for retrieve and append operations and often offer little
functionality beyond record storage.NoSQL database
systems is particularly useful for statistical or real-time
analyses for growing list of elements. To build the

architecture on NoSQL, we consider following five aspects:
1) Elastic scaling[11]. For years, as transaction rates and

availability requirements increase, and as databases
move onto virtualized environments, the economic
advantages of scaling out on commodity hardware
become irresistible. RDBMS might not scale out easily
on commodity clusters, but the new breed of NoSQL
databases are designed to expand transparently to take
advantage of new nodes, and they're usally designed
with low-cost commodity hardware in mind.

2) Big data. Just as transaction rates have grown out of
recognition over the last decade, the volumes of data that
are being stored also have increased massively. Today,
the volumes of "big data" that can be handled by NoSQL
systems, such as Hadoop and MongoDB.

3) Low management cost. NoSQL databases are generally
designed from the ground up to require less management:
automatic repair, data distribution, and simpler data
models lead to lower administration and tuning
requirements.

4) Economics. NoSQL databases typically use clusters of
cheap commodity servers to manage the exploding data
and transaction volumes, while RDBMS tends to rely on
expensive proprietary servers and storage systems. The
result is that the cost per gigabyte or transaction/second
for NoSQL can be many times less than the cost for
RDBMS, allowing people to store and process more data
at a much lower price point.

5) Flexible data models. Change management is a big
headache for large production RDBMS. Even minor
changes to the data model of an RDBMS have to be
carefully managed and may necessitate downtime or
reduced service levels. NoSQL databases have far more
relaxed data model restrictions. NoSQL key-value model
stores and document databases allow the application to
store virtually any structure it wants in a data element.
The result is that application changes and database
schema changes do not have to be managed as one
complicated change unit. In theory, this will allow
applications to iterate faster, though, and clearly without
managing data integrity.

Mongo DB is an open source document-oriented No SQL
database system. It's part of the No SQL family of database
systems. Instead of storing data in tables as is done in a
classical relational database, Mongo DB stores structured
data as JSON-like documents with dynamic schemas, making
the integration of data in certain types of applications easier
and faster.

Mongo DB maintains many of the great features of a
relational database -- like indexed and dynamic queries. But
by changing the data model from relational to
document-oriented, we gain many advantages, including
greater agility through flexible schemas and easier horizontal
scalability.

III. SYSTEM ARCHITECTURE ANALYSIS

A. Overview of the System Architecture
The system should be based on Browser/Server mode. The

browser client sends the message to the server, and the server

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

409

process and forward the message to other clients. The client
is built by HTML, which make it easy to update.

The key concept of system design is that, it should not limit
the user in a specific network. For the actual information to
be communicated, it should be possible to use other network
services based on the requirements of the particular type of
communication [7].

The client is divided into four sub modules: authentication
module, information transmission module, communication
module and management module. The client is built upon a
JavaScript framework called jQuery, which ease the
development of JavaScript application.

B. Architecture Design

Fig. 1. System architecture

Depicted as Fig. 1, we could see that WebSocket and
JavaScript play an important role in the whole architecture.

The whole system, either the client or the server side, is
both built by a same language--JavaScript. This kind of
design lower the complication of the whole system a lot, and
ease the long-time maintenance work. On the client side, we
use j Query framework to simplify the development work.
And the server side is divied into three module:
communication module, message queue module and
persistence module. There is a lot of JavaScript , then they
must be organized well. The preferred way to do this is
utilizing Model-View-Controller (MVC) programming
model. MVC has been adapted as an architecture for most
web applications. It divides the application code into three
kinds fo components: a controller, a model and a view part.
With the responsibilities of each component thus defined,
MVC allows different views and controllers to be developed
for the same model.

Based on Web Socket, the communication module
communicates asynchronously with the client in a
bi-directional style, which improves the responsiveness of
system. This module manages all the WebSocket connection.

Many programming models for real-time collaboration
have been suggested. The simplest and most basic
mechanism is message passing between the objects
associated with the participants. A convenient API can offer
asynchronous multicast for remote method invocation on all
or a subset of participants. This model is very suitable and
intuitive to use for volatile communication-oriented tasks,
such as chatting. It can be refined by distinguishing certain
characteristics for the messages.

The message queue module is important to avoid message
congestion and reliability. A standalone monitoring
application is designed, to monitor and capture messages in
the queue instead of a thread inside the main application. This
way, we can make the monitoring application in the easy to

use application form, such as windows client software.
Moreover, it can make the architecture more flexible to
extend, since the messages can to captured in different
servers or different environments, and can be displayed in
different web applications. In our architecture, monitoring
applications can run in different servers or difference
environment, the messages they monitored can be easily
collected from the queue. In the same way, there can be more
than one web application for displaying the monitored
messages.

The persistence play the role of communicating with
NoSQL system MongoDB, to persistence huge message data
that fetched from the message queue. The actual MongoDB
is installed in multiple physical machine, by utilizing
MongoDB's automated sharding/partitioning feature. The
MongoDB sharded cluster automatically manage fail-over
and balancing of nodes, with few or no changes to the
original application code. These data will be the source of
analysis in future.

IV. KOMM: A PROOF-OF-CONCEPT IMPLEMENTATION
We have implemented a system, called Komm, providing

group communication functionality on the web, and it's easy
to be integrated into any existing web applications.

Komm consists of a server program and client scripts. The
most valuable feature is the common language between
server and client. It lowers the technical complication of the
system, and improves the reliability of it.

When a document that references Komm client scripts is
opened by a user, a new bi-directional connection is created.
The connection will pull data from the server and push client
data to the other side asynchronously. In the other side, the
server program will maintain all these connections, to copy or
exchange data between them based on the busyness logic
Besides this, this data is also persistent into MongoDB for
future analysis. The huge number of data is a big challenge to
the disk input/output capability. This could be solved by disk
array.

A. The Server
The server side is responsible for message receiving,

message forwarding and data indexing. Komm built all this
fictionality based on Node.js. Since Node.js is a script
language, the applications build upon it could be run
platform-independent easily [8].

The server side includes a management module to organize
and coordinate the connections between different groups, and
providing the active connection information. It support
access control feature, which is useful to control one-to-one
and one-to-many connections. These configures could be set
by some clients if they are authorized correctly.

Fig. 2. The result of stress testing

The multi-thread architecture makes the server side good
performance. We give Komm a stress on a server that has a
Intel Xeon E5540 CPU, 1GB RAM. We continuously

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

410

sending a 100 bytes message to it in 1 second, what we expect
are the time between sending and receiving.

Depicted from Fig. 2, tmin, the fasted response time, is
6.218 millisecond. And tmax, the slowest one, is 37.084
millisecond. The good news is that the entire 319 message we
sent is processed successfully, which shows that the server
side has good concurrent process capability.
This result also shows that Komm could be run easily on a
low cheap hardware. It could also expand on multiple nodes
(physical computers) to increase the capacity of the group
communication system.

B. The Implemented Communication Mode
Komm implemented two communication modes: group

communication and one-to-one communication.

Fig. 3. Sequence diagram of group communication

Fig. 4. Sequence diagram of one-to-one communication

The user enters message in the client interface first, which
will be sent to the server through a WebSocket connection
when the user press appropriate button or hotkey. The server
then broadcast this message to other online users by utilizing
the message queue. The message queue is a reliable way to
keep messages from conflicting and losing. At the same time,
all the messages will be stored in the serve's local disk
through the persistence layer, and finally to stored on the hard
disk using MongoDB cluster nodes. The server will send
responsive message to client immediately, whether the whole
broadcasting is finished or not, by using the event-driven
model explained in chapter II C. So the user can get a
responsive interface as soon as possible, which will improve
the acceptance of user.

Similar to the group communication mode, we also
implemented a one-to-one communication mode, which is
useful for some private situation, such as custom service on
e-commerce site. One-to-one communication mode could be
treat as a special form of group communication, which the
group contains only two participants. It share the same
foundation setted up for group communication mode, while
will reduce the complexity and requires less programming

efforts.
The main sequence of one-to-one communication is

similar with that of group one. The biggest difference is that
when the server receives a message from client, it will
forward to a specific user instead of broadcasting.

C. The Management Session Type
A management session type provides information about

how many sessions are running and which online uses are
available. It provides two roles: user and administrator. A
user can select sessions and join them, which will collect the
session into the group. The administrator can change the
properties and configuration of the sessions and block some
users from a session group.

V. CONCLUSION AND FUTURE WORK
We discussed some of the issues involved in the designing

an architecture for a group communication system for the
web. We also proposed a system architecture and
implemented a application called Komm based on the design.
We believe that building such an infrastructure can help
people to communicate more efficiently, since it could make
the application more accessible.

There is still a lot of work to be done. In particular, Web
Socket is not fully supported by current browser, and
different browser support different portion of the Web Socket
specification. For the purpose of making Komm able to run
anywhere , the client side should include some Web Socket
simulation framework such as Kaazing Gateway[9], which
provides a JavaScript library that can enable any modern web
browser to take advantage of Web Socket.

REFERENCES
[1] S. Guoqing, Z. Wei, L. Huajun, and Z. Peng, “Survey on Server-Push

Technology of Web Applications,” Computer Systems and
Applications, vol. 18, 2008.

[2] Z. Xuan and W. L. fang, “Design and Implementation of AJAX-based
Instant Messaging System,” Science and Technology and Engineering,
vol. 9, no. 2, Jan, 2009.

[3] P. Victoria and G. N. Bradford, “Communicating and Displaying
Real-time Data with WebSocket,” Internet Computing, vol. 16, no. 4,
pp. 45-53, July. 2012.

[4] R. M. Lerner, “At the forge: communication in HTML5,” Linux
Journal, vol. 2011, no. 7, F 2011.

[5] H. Zhang, Y. Wang, and J. Han, “Middleware design for integrating
relational database and NOSQL based on data dictionary,” in Proc.
2011 International Conf, Transportation, Mechanical and Electrical
Engineering, Changchun, 2011, pp.1469-1472

[6] S. M. N. Kuan, H. Chin, and D. Hossein, “Design Patterns to Enable
Data Portability between Clouds’ Databases,” in Proc. 2012
International Conf, Computational Science and Its Applications,
Salvador, 2012, pp.117-120

[7] A. Wessels, M. Purvis, J. Jackson, and S. Rahman, “Remote Data
Visualization through WebSockets,” in Proc. 8th Annu. International
Conf. Information Technology: New Generations, Las Vegas, 2011, pp.
1050-1051.

[8] U. Gall and F. J. Hauck, “Promondia: a java-based framework for
real-time group communication in the web,” Computer Networks and
ISDN Journal, Elsevier, April, 1997.

[9] P. Lubbers and F. Greco, “HTML5 Web Sockets: A Quantum Leap in
Scalability for the Web,” SOA World Magazine, June, 201

[10] B. Chen, “A framework for browser-based multiplayer online games
using WebGL and WebSocket,” Multimedia Technology(ICMT), Jul,
2011, pp. 471-474.

[11] R. Cattell, "Scalable SQL ad NoSQL data stores," ACM SIGMOD
Record, vol. 39, pp.12-27, Dec, 2010.

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

411

